切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (05) : 553 -561. doi: 10.3877/cma.j.issn.1673-5250.2022.05.009

论著

孕妇稳定补充叶酸后的血清叶酸水平及其影响因素分析
杨瑾1, 王红艳2, 应春妹1,()   
  1. 1复旦大学附属妇产科医院检验科,上海 200011
    2复旦大学附属妇产科医院生殖发育研究院,上海 200011
  • 收稿日期:2022-04-26 修回日期:2022-09-13 出版日期:2022-10-01
  • 通信作者: 应春妹

Analysis of serum folic acid level and its influencing factors after stable folic acid supplementation in pregnant women

Jin Yang1, Hongyan Wang2, Chunmei Ying1,()   

  1. 1Department of Clinical Laboratory, Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, China
    2Department of Institute of Reproduction & Development, Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, China
  • Received:2022-04-26 Revised:2022-09-13 Published:2022-10-01
  • Corresponding author: Chunmei Ying
  • Supported by:
    General Program of National Natural Science Foundation of China(81873970)
引用本文:

杨瑾, 王红艳, 应春妹. 孕妇稳定补充叶酸后的血清叶酸水平及其影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 553-561.

Jin Yang, Hongyan Wang, Chunmei Ying. Analysis of serum folic acid level and its influencing factors after stable folic acid supplementation in pregnant women[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 553-561.

目的

探讨稳定补充叶酸后,孕妇血清叶酸水平及其影响因素。

方法

选择2019年8月至2020年12月,于复旦大学妇产科医院进行产前检查,并且在正常饮食情况下稳定补充叶酸(400 μg/d×60 d)后的718例孕龄为12~24孕周孕妇为研究对象。根据补充叶酸后的血清叶酸水平,将其分为4组:A组(n=23,血清叶酸水平<7 ng/mL),B组(n=170,血清叶酸水平为≥7~14 ng/mL),C组(n=217,血清叶酸水平为≥14~18 ng/mL),D组(n=308,血清叶酸水平为≥18~20 ng/mL)。采用χ2检验及秩和检验,对4组孕妇一般临床资料及血清维生素B12水平、同型半胱氨酸(Hcy)浓度进行统计学比较(单因素分析)。对孕妇稳定补充叶酸后上述4个血清叶酸水平的影响因素,采用无序多分类logistic回归法进行分析。本研究遵循的程序符合2013年修订的《世界医学协会赫尔辛基宣言》。获取所有受试者的知情同意,并与其签署临床研究知情同意书。

结果

①单因素分析结集显示:4组孕妇血清Hcy浓度、维生素B12水平,孕龄≥12~19孕周与≥19~25孕周构成比比较,差异均有统计学意义(均为P<0.001)。②相对于血清叶酸水平为<7 ng/mL:孕妇血清Hcy浓度每增加1 μmol/L,血清叶酸水平为≥7~14 ng/mL、≥14~18 ng/mL、≥18~20 ng/mL的可能性分别降低到原来的0.731倍(OR=0.731)、0.353倍(OR=0.353)、0.471倍(OR=0.471);孕妇血清维生素B12水平每增加1 pg/mL,血清叶酸水平为≥14~18 ng/mL的可能性增加到原来的1.004倍(OR=1.004)。③相对于血清叶酸水平为≥7~14 ng/mL:孕妇血清Hcy浓度每增加1 μmol/L,血清叶酸水平为<7 ng/mL、≥14~18 ng/mL、≥18~20 ng/mL的可能性分别为增加到原来的1.369倍(OR=1.369)、降低到原来的0.483倍(OR=0.483)、降低到原来的0.644倍(OR=0.644);孕妇血清维生素B12水平每增加1 pg/mL,血清叶酸水平为≥14~18 ng/mL、≥18~20 ng/mL的可能性分别增加到原来的1.003倍(OR=1.003)、1.003倍(OR=1.003);孕龄≥12~19孕周孕妇血清叶酸水平为≥18~20 ng/mL的可能性是孕龄≥19~25孕周孕妇的2.244倍(OR=2.244)。④相对于血清叶酸水平为≥14~18 ng/mL:孕妇血清Hcy浓度每增加1 μmol/L,血清叶酸水平为<7 ng/mL、≥7~14 ng/mL、≥18~20 ng/mL的可能性均分别增加到原来的2.832倍(OR=2.832)、2.069倍(OR=2.069)、孕妇1.333倍(OR=1.333);孕妇血清维生素B12水平每增加1 pg/mL,血清叶酸水平为<7 ng/mL、≥7~14 ng/mL的可能性均降低到原来的0.996倍(OR=0.996)、0.997倍(OR=0.997)。

结论

血清Hcy浓度及维生素B12水平,以及孕龄,均对孕妇稳定补充叶酸后的血清叶酸水平有影响:血清Hcy浓度主要为负向影响,血清维生素B12水平主要为正向影响,孕龄仅对血清叶酸水平较高级别有影响。

Objective

To investigate the serum folic acid level and its influencing factors in pregnant women with periconceptional folic acid supplementation.

Methods

A total of 718 pregnant women with gestational age of 12 to 24 weeks were enrolled in this study from August 2019 to December 2020 at the Obstetrics and Gynecology Hospital of Fudan University. They underwent prenatal examination and stably intaked folic acid supplementation (400 μg/d×60 d) under normal diet. According to serum folic acid level after folic acid supplementation, they were divided into 4 groups: group A (n=23, serum folic acid level <7 ng/mL), group B (n=170, serum folic acid level was ≥7-14 ng/mL), group C (n=217, serum folic acid level was ≥14-18 ng/mL), and group D (n=308, serum folic acid level was ≥18-20 ng/mL). Chi-square test and rank sum test were used to compare general clinical data and serum vitamin B12 level, serum Homocysteine (Hcy) concentration among four groups (monofactor analysis). Multi-classification logistic regression analysis method was used to analyze the influencing factors of 4 levels of serum folic acid of pregnant women after periconceptional folic acid supplementation. The study was conducted in accordance with World Medical Association Declaration of Helsinki revised in 2013. All subjects informed consent and signed the informed consent forms for the clinical study.

Results

① Monofactor analysis results showed that there were significant differences among four groups in serum Hcy concentration, serum vitamin B12 level and gestational age (≥12-19 gestational weeks, ≥19-25 gestational weeks)(P<0.001). ② Serum folic acid level of <7 ng/mL was taken as reference: with increased serum Hcy concentration by 1 μmol/L in pregnant women, the possibility of serum folic acid levels of ≥7-14 ng/mL, ≥14-18 ng/mL and ≥18-20 ng/mL were decreased to 0.731, 0.353 and 0.471 times (OR=0.731, 0.353, 0.471), respectively. With increased serum vitamin B12 level by 1 pg/mL in pregnant women, the possibility of serum folic acid levels of ≥14-18 ng/mL was increased to 1.004 times (OR=1.004). ③ Serum folic acid level of ≥7-14 ng/mL was taken as reference: with increased serum Hcy concentration by 1 μmol/L in pregnant women, the possibility of serum folic acid level of <7 ng/mL, ≥14-18 ng/mL and ≥18-20 ng/mL were increased to 1.369 times (OR=1.369), decreased to 0.483 times (OR=0.483) and decreased to 0.644 times (OR=0.644), respectively. With increased serum vitamin B12 level by 1 pg/mL in pregnant women, the possibility of serum folic acid level of ≥14-18 ng/mL and ≥18-20 ng/mL increased to 1.003 times (OR=1.003) and 1.003 times (OR=1.003), respectively. The possibility of serum folic acid level of ≥18-20 ng/mL in pregnant women with gestation age at ≥12-19 weeks was 2.244 times that of pregnant women with gestation age at ≥19-25 weeks (OR=2.244). ④ Serum folic acid level of ≥14-18 ng/mL was taken as reference: with increased serum Hcy concentration by 1 μmol/L in pregnant women, the possibility of serum folic acid level of <7 ng/mL, ≥7-14 ng/mL and ≥18-20 ng/mL were increased to 2.832, 2.069 and 1.333 times (OR=2.832, 2.069, 1.333), respectively. With increased serum vitamin B12 level by 1 pg/mL in pregnant women, the possibility of serum folic acid level of <7 ng/mL and ≥7-14 ng/mL were decreased to 0.996 and 0.997 times (OR=0.996, 0.997).

Conclusions

Serum Hcy concentration and serum vitamin B12 level, as well as gestational age have significant effects on serum folic acid level of pregnant women with periconceptional folic acid supplementation: serum Hcy concentration is mainly negative and serum vitamin B12 level is mainly positive affected serum folic acid level. Gestational age only affects the higher serum folic acid level in pregnant women.

表1 4组孕妇一般临床资料及血清维生素B12、Hcy水平比较
表2 影响孕妇稳定补充叶酸后血清叶酸水平的无序多分类logistic回归分析参数估计结果(以血清叶酸水平<7 ng/mL为参考类别)
表3 影响孕妇稳定补充叶酸后血清叶酸水平的无序多分类logistic回归分析参数估计结果(以血清叶酸水平≥7~14 ng/mL为参考类别)
表4 影响孕妇稳定补充叶酸后血清叶酸水平的无序多分类logistic回归分析参数估计结果(以血清叶酸水平≥14~18 ng/mL为参考类别)
[1]
Petersen JM, Parker SE, Benedum CM, et al. Periconceptional folic acid and risk for neural tube defects among higher risk pregnancies[J]. Birth Defects Res, 2019, 111(19): 1501-1512. DOI: 10.1002/bdr2.1579.
[2]
Rubini E, Snoek KM, Schoenmakers S, et al. First trimester maternal Homocysteine and embryonic and fetal growth: the rotterdam periconception cohort[J]. Nutrients, 2022, 14(6): 1129. DOI: 10.3390/nu14061129.
[3]
Wojtowicz A, Babczyk D, Galas A, et al. Evaluation of the prevalence of folic acid supplementation before conception and through the first 12 weeks of pregnancy in Polish women at high risk of fetal anomalies[J]. Ginekol Pol, 2022, 93(6): 489-495. DOI: 10.5603/GP.a2021.0192.
[4]
Ha AVV, Zhao Y, Binns CW, et al. Low prevalence of folic acid supplementation during pregnancy: a multicenter study in Vietnam[J]. Nutrients, 2019, 11(10): 2347. DOI: 10.3390/nu11102347.
[5]
van Gool JD, Hirche H, Lax H, et al. Folic acid and primary prevention of neural tube defects: a review[J]. Reprod Toxicol, 2018, 80: 73-84. DOI: 10.1016/j.reprotox.2018.05.004.
[6]
Finnell RH, Caiaffa CD, Kim SE, et al. Gene environment interactions in the etiology of neural tube defects[J]. Front Genet, 2021, 12: 659612. DOI: 10.3389/fgene.2021.659612.
[7]
Wilson RD, O′Connor DL. Maternal folic acid and multivitamin supplementation: international clinical evidence with considerations for the prevention of folate-sensitive birth defects[J]. Prev Med Rep, 2021, 24: 101617. DOI: 10.1016/j.pmedr.2021.101617.
[8]
Mao B, Qiu J, Zhao N, et al. Maternal folic acid supplementation and dietary folate intake and congenital heart defects[J]. PLoS One, 2017, 12(11): e0187996. DOI: 10.1371/journal.pone.0187996.
[9]
Garrett GS, Bailey LB. A public health approach for preventing neural tube defects: folic acid fortification and beyond[J]. Ann N Y Acad Sci, 2018, 1414(1): 47-58. DOI: 10.1111/nyas.13579.
[10]
Zhang R, Guo L, Zhao D, et al. Maternal B-vitamin intake and B-vitamin supplementation during pregnancy in relation to neonatal congenital heart defects: a case-control study with propensity score matching[J]. Eur J Clin Nutr, 2021, 75(5): 782-791. DOI: 10.1038/s41430-020-00804-2.
[11]
Wilson RD, O′Connor DL. Guideline No. 427: Folic acid and multivitamin supplementation for prevention of folic acid-sensitive congenital anomalies[J]. J Obstet Gynaecol Can, 2022, 44(6): 707-719. e1. DOI: 10.1016/j.jogc.2022.04.004.
[12]
Lumley J, Watson L, Watson M, et al. Periconceptional supplementation with folate and/or multivitamins for preventing neural tube defects[J]. Cochrane Database Syst Rev, 2001, (3): CD001056. DOI: 10.1002/14651858.CD001056.
[13]
WHO. Guideline: Optimal serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects. Geneva: World Health Organization, 2015.
[14]
Qu YJ, Lin S, Zhuang J, et al. First-trimester maternal folic acid supplementation reduced risks of severe and most congenital heart diseases in offspring: a large case-control study[J]. J Am Heart Assoc, 2020, 9(13): e015652. DOI: 10.1161/JAHA.119.015652.
[15]
Kalmbach R, Paul L, Selhub J. Determination of unmetabolized folic acid in human plasma using affinity HPLC[J]. Am J Clin Nutr, 2011, 94(1): 343S-347S. DOI: 10.3945/ajcn.111.013433.
[16]
Sobczyńska-Malefora A, Harrington DJ. Laboratory assessment of folate (vitamin B9) status[J]. J Clin Pathol, 2018, 71(11): 949-956. DOI: 10.1136/jclinpath-2018-205048.
[17]
Gibson RS. Principles of nutritional assessment[M]. Oxford: Oxford University Press, 2005.
[18]
Yuan X, Han X, Zhou W, et al. Association of folate and vitamin B12 imbalance with adverse pregnancy outcomes among 11 549 pregnant women: an observational cohort study[J]. Front Nutr, 2022, 9: 947118. DOI: 10.3389/fnut.2022.947118.
[19]
Rogers LM, Cordero AM, Pfeiffer CM, et al. Global folate status in women of reproductive age: a systematic review with emphasis on methodological issues[J]. Ann N Y Acad Sci, 2018, 1431(1): 35-57. DOI: 10.1111/nyas.13963.
[20]
Ashraf MJ, Cook JR, Rothberg MB. Clinical utility of folic acid testing for patients with anemia or dementia[J]. J Gen Intern Med, 2008, 23(6): 824-826. DOI: 10.1007/s11606-008-0615-z.
[21]
Singh G, Hamdan H, Singh V. Clinical utility of serum folate measurement in tertiary care patients: argument for revising reference range for serum folate from 3.0 ng/mL to 13.0 ng/mL[J]. Pract Lab Med, 2015, 1: 35-41. DOI: 10.1016/j.plabm.2015.03.005.
[22]
Kozman D, Mattox S, Singh G. Serum folate of less than 7.0 ng/mL is a marker of malnutrition[J]. Lab Med, 2020, 51(5): 507-511. DOI: 10.1093/labmed/lmz101.
[23]
Santander Ballestín S, Giménez Campos MI, Ballestín Ballestín J, et al. Is supplementation with micronutrients still necessary during pregnancy? a review[J]. Nutrients, 2021, 13(9): 3134. DOI: 10.3390/nu13093134.
[24]
Huo Y, Li J, Qin X, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial[J]. JAMA, 2015, 313(13): 1325-1335. DOI: 10.1001/jama.2015.2274.
[25]
Moore K, Hughes CF, Hoey L, et al. Role of fortification and supplementation in achieving optimal biomarker status of B-vitamins for better mental health in older adults[J]. Proc Nutr Soc, 2017, 76(OCE3): E49. DOI: 10.1017/S0029665117001215.
[26]
Solé-Navais P, Salat-Batlle J, Cavallé-Busquets P, et al. Early pregnancy folate-cobalamin interactions and their effects on cobalamin status and hematologic variables throughout pregnancy[J]. Am J Clin Nutr, 2018, 107(2): 173-182. DOI: 10.1093/ajcn/nqx041.
[27]
Kharb S, Singh A, Bala J, et al. Prospective study on role of folic acid and vitamin B12 in early pregnancy and spontaneous abortion[J]. Biomed Biotechnol Res J, 2018, 2(4): 265-268. DOI: 10.4103/bbrj.bbrj_85_18.
[28]
Rogne T, Tielemans MJ, Chong MF, et al. Associations of maternal Vitamin B12 concentration in pregnancy with the risks of preterm birth and low birth weight: a systematic review and Meta-analysis of individual participant data[J]. Am J Epidemiol, 2017, 185(3): 212-223. DOI: 10.1093/aje/kww212.
[29]
He J, Jiang D, Cui X, et al. Vitamin B12 status and folic acid/vitamin B12 related to the risk of gestational diabetes mellitus in pregnancy: a systematic review and Meta-analysis of observational studies[J]. BMC Pregnancy Childbirth, 2022, 22(1): 587. DOI: 10.1186/s12884-022-04911-9.
[30]
Serrano NC, Quintero-Lesmes DC, Becerra-Bayona S, et al. Association of pre-eclampsia risk with maternal levels of folate, homocysteine and vitamin B12 in Colombia: a case-control study[J]. PLoS One, 2018, 13(12): e0208137. DOI: 10.1371/journal.pone.0208137.
[31]
Qin W, Hu X, Fu C, et al. Estimation of homocysteine concentration as an indicator of foetal death in pregnant Chinese women with preeclampsia: a case-control study[J]. J Clin Lab Anal, 2022, 36(4): e24312. DOI: 10.1002/jcla.24312.
[32]
Liu C, Luo D, Wang Q, et al. Serum homocysteine and folate concentrations in early pregnancy and subsequent events of adverse pregnancy outcome: the Sichuan Homocysteine study[J]. BMC Pregnancy Childbirth, 2020, 20(1): 176. DOI: 10.1186/s12884-020-02860-9.
[33]
D′Souza SW, Glazier JD. Homocysteine metabolism in pregnancy and developmental impacts[J]. Front Cell Dev Biol, 2022, 10: 802285. DOI: 10.3389/fcell.2022.802285.
[34]
Zheng L, Huang J, Kong H, et al. The effect of folic acid throughout pregnancy among pregnant women at high risk of pre-eclampsia: a randomized clinical trial[J]. Pregnancy Hypertens, 2020, 19: 253-258. DOI: 10.1016/j.preghy.2020.01.005.
[35]
Martinussen MP, Bracken MB, Triche EW, et al. Folic acid supplementation in early pregnancy and the risk of preeclampsia, small for gestational age offspring and preterm delivery[J]. Eur J Obstet Gynecol Reprod Biol, 2015, 195: 94-99. DOI: 10.1016/j.ejogrb.2015.09.022.
[36]
Alvestad S, Husebye ESN, Christensen J, et al. Folic acid and risk of preterm birth, preeclampsia, and fetal growth restriction among women with epilepsy: a prospective cohort study[J]. Neurology, 2022, 99(6): e605-e615. DOI: 10.1212/WNL.0000000000200669.
[37]
Shane B. Folate and vitamin B12 metabolism: overview and interaction with riboflavin, vitamin B6, and polymorphisms[J]. Food Nutr Bull, 2008, 29(2 Suppl): S5-S19. DOI: 10.1177/15648265080292S103.
[38]
Dai C, Fei Y, Li J, et al. A novel review of homocysteine and pregnancy complications[J]. Biomed Res Int, 2021, 2021: 6652231. DOI: 10.1155/2021/6652231.
[39]
Hazra A, Kraft P, Lazarus R, et al. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway[J]. Hum Mol Genet, 2009, 18(23): 4677-4687. DOI: 10.1093/hmg/ddp428.
[1] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[2] 居晓庆, 金蕴洁, 王晓燕. 剖宫产术后瘢痕子宫患者再次妊娠阴道分娩发生子宫破裂的影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 575-581.
[3] 王蓓蓓, 董启秀, 郗红燕, 于庆云, 张丽君, 式光. 早孕期孕妇药物流产失败的影响因素分析与构建相关预测模型及其对药物流产成功的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 588-594.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 周梦玲, 薛志伟, 周淑. 妊娠合并子宫肌瘤的孕期变化及其与不良妊娠结局的关系[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 611-615.
[6] 冉晨曦, 沈如飞, 廖明钰, 廖倩, 周玲, 张玉玲, 隆敏. 垂体瘤孕妇的诊治与围分娩期管理[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 487-491.
[7] 陈樱, 陈艳莉. 高龄孕妇心率变异性原因及围产结局分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 295-301.
[8] 冯丹艳, 曹晓辉, 史玉霞. 血清脂联素与胎盘亮氨酸氨肽酶对妊娠期糖尿病患者妊娠结局的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 302-308.
[9] 匡德凤, 李志国, 华绍芳, 薛凤霞. 高脂诱导孕鼠血清及胎盘组织脂肪酸结合蛋白-4及相关脂蛋白水平变化及其意义[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 338-344.
[10] 邬龙海, 黄淼, 龚云辉, 喻云倩. 血清趋化因子在妊娠期糖尿病孕妇中的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 357-362.
[11] 张璐, 杨惠娟, 刘凯波. 2015—2021年北京市辅助生殖技术助孕活产及高龄孕母占比与不良妊娠结局变化趋势[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 46-53.
[12] 沈立平, 龙驭云, 杨月华, 张敏, 许阳, 赵亚丽, 李静, 张昀, 江世文, 孙志明. 不同避孕方式对女性再次受孕的影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 107-112.
[13] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[14] 刘雪云, 范颖, 姚爱军, 张胜苗, 吕亚妮, 张冰清, 张晓宇, 刘恒. 基于微信小程序的个体化、全程护理干预对孕妇孕期体重及分娩结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 455-460.
[15] 王晓怡, 洪凡, 陈晴晴, 孙雯. 新型冠状病毒感染疫情高发状态下封闭封控管理区孕产妇的管理方案研究[J]. 中华产科急救电子杂志, 2023, 12(02): 109-112.
阅读次数
全文


摘要