切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (05) : 562 -568. doi: 10.3877/cma.j.issn.1673-5250.2022.05.010

论著

支气管肺泡灌洗液宏基因组二代测序对儿童肺部感染的病原体诊断价值
廖雄宇, 邱坤银, 黄科, 黎阳, 徐宏贵, 方建培, 周敦华()   
  1. 中山大学孙逸仙纪念医院儿童医学中心,广州 510120
  • 收稿日期:2022-03-01 修回日期:2022-08-31 出版日期:2022-10-01
  • 通信作者: 周敦华

Pathogen diagnostic value of metagenomic next-generation sequencing of bronchus alveolus lavage fluid in children with pulmonary infection

Xiongyu Liao, Kunyin Qiu, Ke Huang, Yang Li, Honggui Xu, Jianpei Fang, Dunhua Zhou()   

  1. Children′s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
  • Received:2022-03-01 Revised:2022-08-31 Published:2022-10-01
  • Corresponding author: Dunhua Zhou
  • Supported by:
    Guangdong Basic and Applied Basic Research Fund(2021A1515011809); Sun Yat-sen Scientific Research Sailing Project(YXQH202205)
引用本文:

廖雄宇, 邱坤银, 黄科, 黎阳, 徐宏贵, 方建培, 周敦华. 支气管肺泡灌洗液宏基因组二代测序对儿童肺部感染的病原体诊断价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 562-568.

Xiongyu Liao, Kunyin Qiu, Ke Huang, Yang Li, Honggui Xu, Jianpei Fang, Dunhua Zhou. Pathogen diagnostic value of metagenomic next-generation sequencing of bronchus alveolus lavage fluid in children with pulmonary infection[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 562-568.

目的

探讨支气管肺泡灌洗液(BALF)宏基因组二代测序(mNGS)技术,对儿童肺部感染的病原体诊断价值。

方法

选择2019年2月至2020年5月,于中山大学孙逸仙纪念医院诊疗的28例疑似肺部感染患儿为研究对象。根据本研究采用的肺部感染诊断标准,将患儿分为观察组(n=22,确诊为肺部感染)和对照组(n=6,非肺部感染)。采用回顾性分析方法对患儿临床病例资料进行分析。采用mNGS与传统病原体检测方法,对患儿BALF进行病原体检测。采用秩和检验与χ2检验,对2组患儿临床资料进行统计学比较;采用广义相加模型(GAM),对白细胞计数、血清C反应蛋白(CRP)水平分别与患儿BALF中mNGS病原体测序读数的关系进行分析;采用受试者工作特征(ROC)曲线,评估2种方法对儿童肺部感染的病原体诊断价值。本研究通过中山大学孙逸仙纪念医院医学伦理委员会批准(审批文号:SYSKY-2022-300-01)。所有患儿接受治疗前,由监护人签署知情同意书。

结果

①2组患儿年龄、男性及免疫功能缺陷患儿比例、体温、白细胞计数、中性粒细胞绝对计数、血清CRP及PCT水平、BALF mNGS及传统病原体检测阳性率、BALF mNGS及传统病原体检测报告所需时间、BALF mNGS病原体测序读数比较,差异均无统计学意义(P>0.05)。②28例患儿中,mNGS检测患儿BALF的病原体阳性率为89.3%(25/28),高于传统病原体检测方法的17.9%(5/28),并且差异有统计学意义(χ2=28.72,P<0.001)。③GAM分析显示,28例患儿的血常规白细胞计数与其BALF中mNGS病原体测序读数之间存在负线性关系(P<0.05);当血清CRP水平<60 mg/L时,患儿血清CRP水平随其BALF中mNGS病原体测序读数增加而增加。④BALF mNGS诊断儿童肺部感染的ROC-AUC为0.955(95%CI:0.893~1.000,P=0.180),高于传统病原体检测方法的0.508(95%CI:0.324~0.690,P=0.010),并且差异有统计学意义(Z=4.45,P<0.05)。

结论

BALF mNGS可为儿童肺部感染提供快速、准确的病原体诊断。患儿血常规白细胞计数和血清CRP水平,可作为评估抗感染效果的指标。

Objective

To investigate the pathogen diagnostic value of metagenomic next-generation sequencing (mNGS) technology of bronchus alveolus lavage fluid (BALF) in children with pulmonary infections.

Methods

A total of 28 children with suspected pulmonary infections treated at Sun Yat-sen Memorial Hospital from February 2019 to May 2020 were enrolled in this study. According to diagnostic criteria of pulmonary infection used in this study, they were divided into observation group (n=22, children confirmed with pulmonary infection) and control group (n=6, children without pulmonary infection). The clinical data of all children were retrospectively analyzed. Pathogens of BALF in them were detected by mNGS and traditional pathogen detection methods. Rank sum test and chi-square test were used to statistically compare clinical data of children between two groups. Generalized additive model (GAM) was used to analyze the relationship between white blood cell count or serum C-reactive protein (CRP) levels and mNGS pathogen sequencing results of BALF of children. Receiver operating characteristic (ROC) curve was used to assess pathogenic diagnostic values of two methods for pulmonary infections in children. The study was approved by the Medical Ethics Committee of Sun Yat-sen Memorial Hospital (Approval No. SYSKY-2022-300-01). Informed consent forms were obtained by children′s guardians before receiving treatment.

Results

① There were no significant differences between two groups in age, proportion of male and immunocompromised children, body temperature, white blood cell count, absolute neutrophil count, serum CRP and PCT levels, positive rates by BALF mNGS and traditional pathogen testing methods, required-testing-time of BALF mNGS and traditional pathogen testing, BALF mNGS pathogen sequencing results (P>0.05). ② Among 28 children, pathogen positive rate of BALF detected by mNGS was 89.3%(25/28), which was higher than that of 17.9%(5/28) by traditional pathogen detection methods, and the difference was statistically significant (χ2=28.72, P<0.001). ③ GAM analysis results showed a negative linear relationship between white blood cell count and their mNGS pathogen sequencing results of BALF in 28 children (P<0.05). And when serum CRP level was<60 mg/L, the children′s serum CRP level increased with their mNGS pathogen sequencing results. ④ROC-AUC of BALF mNGS for diagnosis of pulmonary infection in children was 0.955 (95%CI: 0.893-1.000, P=0.180), which was higher than that of traditional pathogen detection methods of 0.508 (95%CI: 0.324-0.690, P=0.010), and the difference was statistically significant(Z=4.45, P<0.05).

Conclusions

BALF mNGS can provide a rapid and accurate pathogen diagnosis of pulmonary infections in children. White blood cell count and serum CRP levels in children can be used as indicators to assess the effectiveness of anti-infection treatment.

表1 2组疑似肺部感染患儿临床资料比较
表2 对28例疑似肺部感染患儿BALF采取2种方法检出病原体构成比[例数(%)]
图2 对本组疑似肺部感染患儿BALF样本采取传统病原体检测和mNGS技术进行儿童肺部感染病原体诊断的ROC曲线比较
[1]
Bhuiyan MU, Blyth CC, West R, et al. Combination of clinical symptoms and blood biomarkers can improve discrimination between bacterial or viral community-acquired pneumonia in children[J]. BMC Pulm Med, 2019, 19(1): 71. DOI: 10.1186/s12890-019-0835-5.
[2]
Zhang S, Sammon PM, King I, et al. Cost of management of severe pneumonia in young children: systematic analysis[J]. J Glob Health, 2016, 6(1): 010408. DOI: 10.7189/jogh.06.010408.
[3]
Xie Y, Du J, Jin W, et al. Comparison the pathogen diagnosis of severe pneumonia by using next generation sequencing and traditional detection methods, China, 2010-2018[J]. J Infect, 2018, 78(2): S0163445318302779. DOI: 10.1016/j.jinf.2018.09.004.
[4]
中华医学会呼吸病学分会感染学组. 中国成人医院获得性肺炎与呼吸机相关性肺炎诊断和治疗指南(2018年版)[J]. 中华结核和呼吸杂志2018, 41(4): 255-280. DOI: 10.3760/cma.j.issn.1001-0939.2018.04.006.
[5]
宏基因组分析和诊断技术在急危重症感染应用专家共识组. 宏基因组分析和诊断技术在急危重症感染应用的专家共识[J]. 中华急诊医学杂志2019, 28(2): 151-155. DOI: 10.3760/cma.j.issn.1671-0282.2019.02.005.
[6]
Miao Q, Ma Y, Wang Q, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice[J]. Clin Infect Dis, 2018, 67(suppl_2): S231-S240. DOI: 10.1093/cid/ciy693.
[7]
Li Y, Sun B, Tang X, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(2): 369-374. DOI: 10.1007/s10096-019-03734-5.
[8]
Huang J, Jiang E, Yang D, et al. Metagenomic next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions[J]. Infect Drug Resist, 2020, 13: 567-576. DOI: 10.2147/IDR.S235182.
[9]
Guan H, Shen A, Lv X, et al. Detection of virus in CSF from the cases with meningoencephalitis by next-generation sequencing[J]. J Neurovirol, 2016, 22(2): 240-245. DOI: 10.1007/s13365-015-0390-7.
[10]
Patterson TF, Thompson GR 3rd, Denning DW, et al. Executive summary: practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2016, 63(4): 433-442. DOI: 10.1093/cid/ciw444.
[11]
Chen X, Ding S, Lei C, et al. Blood and bronchoalveolar lavage fluid metagenomic next-generation sequencing in pneumonia[J]. Can J Infect Dis Med Microbiol, 2020, 2020: 6839103. DOI: 10.1155/2020/6839103.
[12]
Peng JM, Du B, Qin HY, et al. Metagenomic next-generation sequencing for the diagnosis of suspected pneumonia in immunocompromised patients[J]. J Infect, 2021, 82(4): 22-27. DOI: 10.1016/j.jinf.2021.01.029.
[13]
Chen J, Zhao Y, Shang Y, et al. The clinical significance of simultaneous detection of pathogens from bronchoalveolar lavage fluid and blood samples by metagenomic next-generation sequencing in patients with severe pneumonia[J]. J Med Microbiol, 2021, 70(1): 10.1099/jmm.0.001259. DOI: 10.1099/jmm.0.001259.
[14]
Fang X, Mei Q, Fan X, et al. Diagnostic value of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in ventilator-associated pneumonia patients[J]. Front Microbiol, 2020, 11: 599756. DOI: 10.3389/fmicb.2020.599756.
[15]
Wang H, Lu Z, Bao Y, et al. Clinical diagnostic application of metagenomic next-generation sequencing in children with severe nonresponding pneumonia[J]. PLoS One, 2020, 15(6): e0232610. DOI: 10.1371/journal.pone.0232610.
[16]
Shi W, Zhu S. The application of metagenomic next-generation sequencing in detection of pathogen in bronchoalveolar lavage fluid and sputum samples of patients with pulmonary infection[J]. Comput Math Methods Med, 2021, 2021: 7238495. DOI: 10.1155/2021/7238495.
[17]
Lin P, Chen Y, Su S, et al. Diagnostic value of metagenomic next-generation sequencing of bronchoalveolar lavage fluid for the diagnosis of suspected pneumonia in immunocompromised patients[J]. BMC Infect Dis, 2022, 22(1): 416. DOI: 10.1186/s12879-022-07381-8.
[18]
Shi Y, Peng JM, Qin HY, et al. Metagenomic next-generation sequencing: a promising tool for diagnosis and treatment of suspected pneumonia in rheumatic patients with acute respiratory failure: retrospective cohort study[J]. Front Cell Infect Microbiol, 2022, 12: 941930. DOI: 10.3389/fcimb.2022.941930.
[19]
Liu Y, Zhu H, Zheng Y. Detection of pneumocystis jirovecii pneumonia in infants with non-human immunodeficiency virus admitted to pediatric intensive care using metagenomics next-generation sequencing[J]. Infect Drug Resist, 2022, 15: 1889-1902. DOI: 10.2147/IDR.S358483.
[20]
Qu Y, Ding W, Liu S, et al. Metagenomic next-generation sequencing vs. traditional pathogen detection in the diagnosis of infection after allogeneic hematopoietic stem cell transplantation in children[J]. Front Microbiol, 2022, 13: 868160. DOI: 10.3389/fmicb.2022.868160.
[21]
Zhang D, Yang X, Wang J, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in patients with lower respiratory tract infections[J]. J Int Med Res, 2022, 50(4): 3000605221089795. DOI: 10.1177/03000605221089795.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 何霞, 黄蓉, 祁文瑾. 胎膜早破孕妇胎盘与胎膜菌群丰度的高通量测序研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 549-555.
[3] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[4] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[5] 张梦思, 麻艺群, 蒙礼娟, 朱辉, 付晋凤. 压力手套与指蹼加压带及泡沫型硅凝胶贴膜联合应用于儿童瘢痕性并指术后的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 329-334.
[6] 郑宝英, 黄小兰, 贾楠, 朱春梅. 儿童难治性肺炎支原体肺炎早期预警指标[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 215-221.
[7] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[8] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[9] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[10] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[11] 张佳臣, 宋红欣. 儿童青少年等效球镜屈光度变化与屈光不正进展相关性的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 217-222.
[12] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[13] 王晓瑜, 郭群英, 牛雅萌, 赵成松. 公立儿童医院促进儿科就医均等化实践探析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 383-387.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要