切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2024, Vol. 20 ›› Issue (03) : 245 -250. doi: 10.3877/cma.j.issn.1673-5250.2024.03.001

生殖医学专辑

胎儿单基因遗传病无创产前检测的研究现状
谭娟1, 谭建新2, 邵彬彬2, 王艳2, 许争峰2,()   
  1. 1. 南京医科大学附属妇产医院(南京市妇幼保健院)产前诊断中心,南京 210004;连云港市妇幼保健院医学遗传与产前诊断科,连云港 222006
    2. 南京医科大学附属妇产医院(南京市妇幼保健院)产前诊断中心,南京 210004
  • 收稿日期:2024-01-30 修回日期:2024-04-30 出版日期:2024-06-01
  • 通信作者: 许争峰

Current research status on non-invasive prenatal testing for fetal with single gene inheritance diseases

Juan Tan1, Jianxin Tan2, Binbin Shao2, Yan Wang2, Zhengfeng Xu2,()   

  1. 1. Prenatal Diagnosis Center, Women′s Hospital of Nanjing Medical University (Nanjing Women and Children′s Healthcare Hospital), Nanjing 210004, Jiangsu Province, China; Department of Medical Genetics and Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang 222006, Jiangsu Province, China
    2. Prenatal Diagnosis Center, Women′s Hospital of Nanjing Medical University (Nanjing Women and Children′s Healthcare Hospital), Nanjing 210004, Jiangsu Province, China
  • Received:2024-01-30 Revised:2024-04-30 Published:2024-06-01
  • Corresponding author: Zhengfeng Xu
  • Supported by:
    National Key Research and Development Program of China(2022YFC2703400); Lianyungang Health Technology Project(202126)
引用本文:

谭娟, 谭建新, 邵彬彬, 王艳, 许争峰. 胎儿单基因遗传病无创产前检测的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 245-250.

Juan Tan, Jianxin Tan, Binbin Shao, Yan Wang, Zhengfeng Xu. Current research status on non-invasive prenatal testing for fetal with single gene inheritance diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 245-250.

单基因遗传病(single gene inheritance disease),又可被简称为单基因病(monogenic inheritance),是导致新生儿出生缺陷的主要原因之一。目前临床对绝大多数该病患儿尚无有效治疗手段,该病患儿出生给社会和家庭造成巨大负担。因此,对胎儿单基因病的产前筛查与诊断十分重要。目前无创产前检测(NIPT)作为一种新的检测胎儿单基因病的技术,因其具有采样安全、方便、早孕期无创检测等优势,受到产前诊断领域越来越多关注。笔者拟对胎儿单基因病NIPT技术及其应用前景与临床开展面临的挑战的最新研究现状进行阐述。

Single gene inheritance disease also known as monogenic inheritance, is one of the main causes of birth defects in newborns. The vast majority single gene inheritance diseases still lack effective treatment methods up to now, and cause a huge burden on society and families of children with gene inheritance diseases. Therefore, prenatal screening and diagnosis of fetal with single gene inheritance diseases are very important. At present, non-invasive prenatal testing (NIPT), as a new technology for detecting fetal with single gene inheritance diseases, has attracted increasing attention in the field of prenatal diagnosis due to its advantages of sampling safety, convenience, and non-invasive early pregnancy detection. The authors intended to elaborate on the latest research status of the technical methods, application prospects, and clinical challenges of NIPT for fetal with single gene inheritance diseases.

[1]
Salomon LJ, Sotiriadis A, Wulff CB, et al. Risk of miscarriage following amniocentesis or chorionic villus sampling: systematic review of literature and updated Meta-analysis[J]. Ultrasound Obstet Gynecol, 2019, 54(4): 442-451. DOI: 10.1002/uog.20353.
[2]
Saito H, Sekizawa A, Morimoto T, et al. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma[J]. Lancet, 2000, 356(9236): 1170. DOI: 10.1016/S0140-6736(00)02767-7.
[3]
Hanson B, Scotchman E, Chitty LS, et al. Non-invasive prenatal diagnosis (NIPD): how analysis of cell-free DNA in maternal plasma has changed prenatal diagnosis for monogenic disorders[J]. Clin Sci (Lond), 2022136(22): 1615-1629. DOI: 10.1042/CS20210380.
[4]
Chitty LS, Khalil A, Barrett AN, et al. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA[J]. Prenat Diagn, 2013, 33(5): 416-423. DOI: 10.1002/pd.4066.
[5]
Chiu RW, Lau TK, Cheung PT, et al. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study[J]. Clin Chem, 2002, 48(5): 778-780.
[6]
Scotchman E, Shaw J, Paternoster B, et al. Non-invasive prenatal diagnosis and screening for monogenic disorders[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 253: 320-327. DOI: 10.1016/j.ejogrb.
[7]
Young E, Bowns B, Gerrish A, et al. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders[J]. J Mol Diagn, 2020, 22(9): 1151-1161. DOI: 10.1016/j.jmoldx.
[8]
Chen C, Sun J, Yang Y, et al. Noninvasive prenatal diagnosis of hemophilia A by a haplotype-based approach using cell-free fetal DNA[J]. Biotechniques, 2020, 68(3): 117-121. DOI: 10.2144/btn-2019-0113.
[9]
New MI, Tong YK, Yuen T, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma[J]. J Clin Endocrinol Metab, 2014, 99(6): E1022- E1030. DOI: 10.1210/jc.2014-1118.
[10]
Young E, Bowns B, Gerrish A, et al. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders[J]. J Mol Diagn, 2020, 22(9): 1151-1161. DOI: 10.1016/j.jmoldx.2020.06.001.
[11]
Yang S, Zhao Q, Tang L, et al. Whole genome assembly of human papillomavirus by nanopore long-read sequencing[J]. Front Genet, 2022, 12: 798608. DOI: 10.3389/fgene.2021.798608.
[12]
Barrett AN, McDonnell TC, Chan KC, et al. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia[J]. Clin Chem, 2012, 58(6): 1026-1032. DOI: 10.1373/clinchem.2011.178939.
[13]
Sawakwongpra K, Tangmansakulchai K, Ngonsawan W, et al. Droplet-based digital PCR for non-invasive prenatal genetic diagnosis of α and β-thalassemia[J]. Biomed Rep, 2021, 15(4): 82. DOI: 10.3892/br.2021.1458.
[14]
Constantinou CG, Karitzi E, Byrou S, et al. Optimized droplet digital pcr assay on cell-free DNA samples for non-invasive prenatal diagnosis: application to beta-thalassemia[J]. Clin Chem, 2022, 68(8): 1053-1063. DOI: 10.1093/clinchem/hvac076.
[15]
D′Aversa E, Breveglieri G, Boutou E, et al. Droplet digital PCR for non-invasive prenatal detection of fetal single-gene point mutations in maternal plasma[J]. Int J Mol Sci, 2022, 23(5): 2819. DOI: 10.3390/ijms23052819.
[16]
Lv W, Wei X, Guo R, et al. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and re-sequencing technology (cSMART)[J]. Clin Chem, 2015, 61(1): 172-181. DOI: 10.1373/clinchem.2014.229328.
[17]
Lv W, Linpeng S, Li Z, et al. Noninvasive prenatal diagnosis for pregnancies at risk for β-thalassaemia: a retrospective study[J]. BJOG, 2021, 128(2): 448-457. DOI: 10.1111/1471-0528.16295.
[18]
Lv W, Liang L, Chen X, et al. Noninvasive prenatal testing of methylmalonic acidemia cblC type using the cSMART assay for MMACHC gene mutations[J]. Front Genet, 2022, 12: 750719. DOI: 10.3389/fgene.2021.750719.
[19]
Peng D, Ganye Z, Gege S, et al. Clinical application of non-invasive prenatal diagnosis of phenylketonuria based on haplotypes via paired-end molecular tags and weighting algorithm[J]. BMC Med Genom, 2021, 14(1): 294. DOI: 10.1186/s12920-021-01141-4.
[20]
Rabinowitz T, Polsky A, Golan D, et al. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders[J]. Genome Res, 2019, 29(3): 428-438. DOI: 10.1101/gr.235796.118.
[21]
Pin-Jung C, Pai-Chi T, Zhu Y, et al. Noninvasive prenatal diagnostics: recent developments using circulating fetal nucleated cells[J]. Curr Obstet Gynecol Rep, 2019, 8(1): 1-8.
[22]
Sabbatinelli G, Fantasia D, Palka C, et al. Isolation and enrichment of circulating fetal cells for NIPD: an overview[J]. Diagnostics (Basel), 2021, 11(12): 2239. DOI: 10.3390/diagnostics11122239.
[23]
Chen Y, Wu Z, Sutlive J, et al. Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells[J]. J Nanobiotechnology, 2022, 20(1): 546. DOI: 10.1186/s12951-022-01749-3.
[24]
Toft CLF, Ingerslev HJ, Kesmodel US, et al. Cell-based non-invasive prenatal testing for monogenic disorders: confirmation of unaffected fetuses following preimplantation genetic testing[J]. J Assist Reprod Genet, 2021, 38(8): 1959-1970. DOI: 10.1007/s10815-021-02104-5.
[25]
Yu SCY, Jiang P, Peng W, et al. Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma[J]. Proc Natl Acad Sci USA, 2021, 118(50): e2114937118. DOI: 10.1073/pnas.2114937118.
[26]
Vossaert L, Chakchouk I, Zemet R, et al. Overview and recent developments in cell-based noninvasive prenatal testing[J]. Prenat Diagn, 2021, 41(10): 1202-1214. DOI: 10.1002/pd.5957.
[27]
Hill M, Twiss P, Verhoef TI, et al. Non-invasive prenatal diagnosis for cystic fibrosis: detection of paternal mutations, exploration of patient preferences and cost analysis[J]. Prenat Diagn, 2015, 35(10): 950-958. DOI: 10.1002/pd.4585.
[28]
Xu C, Cai X, Chen S, et al. Comprehensive non-invasive prenatal screening for pregnancies with elevated risks of genetic disorders: protocol for a prospective, multicentre study[J]. BMJ Open, 2021, 11(8): e053617. DOI: 10.1136/bmjopen-2021-053617.
[29]
Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders[J]. Ultrasound Obstet Gynecol, 2022, 59(1): 33-39. DOI: 10.1002/uog.23756.
[30]
Hui L, Bianchi DW. Fetal fraction and noninvasive prenatal testing: what clinicians need to know[J]. Prenat Diagn, 2020, 40(2): 155-163. DOI: 10.1002/pd.5620.
[31]
Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements[J]. Crit Rev Clin Lab Sci, 2020, 57(7): 484-507. DOI: 10.1080/10408363.2020.1750558.
[32]
刘玉兰,陈雅莉,肖小华,等. 基于电驱动在线快速分离富集技术的研究进展[J]. 色谱2020, 38(10): 1197-1205. DOI: 10.3724/SP.J.1123.2020.07026.
[33]
Alyafee Y, Al Tuwaijri A, Umair M, et al. Non-invasive prenatal testing for autosomal recessive disorders: a new promising approach[J]. Front Genet, 2022, 13: 1047474. DOI: 10.3389/fgene.2022.1047474.
[34]
何珮清,刘佳楠,刘彦慧. 胎儿游离DNA在单基因遗传病检测的研究进展[J]. 中华医学遗传学杂志2022, 39(8) : 809-813. DOI: 10.3760/cma.j.cn511374-20210506-00386.
[35]
Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders[J]. Ultrasound Obstet Gynecol, 2022, 59(1): 33-39. DOI: 10.1002/uog.23756.
[36]
Verhoef TI, Hill M, Drury S, et al. Non-invasive prenatal diagnosis (NIPD) for single gene disorders: cost analysis of NIPD and invasive testing pathways[J]. Prenat Diagn, 2016, 36(7): 636-642. DOI: 10.1002/pd.4832.
[37]
Riku S, Hedriana H, Carozza JA, et al. Reflex single-gene non-invasive prenatal testing is associated with markedly better detection of fetuses affected with single-gene recessive disorders at lower cost[J]. J Med Econ, 2022, 25(1): 403-411. DOI: 10.1080/13696998.2022.2053384.
[38]
Huster S. Non-invasive prenatal diagnostics (NIPD) in the system of medical care. Ethical and legal issues[J]. J Perinat Med, 2021, 49(8): 972-978. DOI: 10.1515/jpm-2021-0195.
[39]
Kim NK. A normative review on non-invasive prenatal diagnosis (NIPD): focusing on the German discussion on PrenaTest®[J]. Dev Reprod, 2021, 25(2): 113-121. DOI: 10.12717/DR.2021.25.2.113.
[1] 孙国先, 徐媛, 刘微丽, 郑庆斌, 侯红玲. 辛普森菌群多样性指数与降钙素原对机械通气细菌性肺炎患者的预测价值研究[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 28-32.
[2] 李倩, 邓莉平, 陈果, 张忠威, 莫平征, 胡文佳, 陈良君, 张捷, 张永喜, 杨蓉蓉, 熊勇. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 24-31.
[3] 罗来邦, 王绪杨, 胡续光, 张友福, 徐志丹. 宏基因组二代测序早期筛查肝移植术后人类微小病毒B19感染临床研究[J]. 中华移植杂志(电子版), 2022, 16(06): 346-352.
[4] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[5] 邢媛媛, 蒋军红, 谢海琴, 吕学东. 肺恶性肿瘤继发下呼吸道感染病原学特点及耐药分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 779-783.
[6] 徐旺, 王赛妮, 李华娟, 唐英俊, 刘峰, 林玲, 黄华萍. 肺泡灌洗液宏基因组二代测序辅助诊断肺隐球菌病一例[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 132-134.
[7] 蔡丽婷, 田家伟, 曹磊, 刘澄英. 病原体检测对慢性阻塞性疾病并发肺炎的诊断价值[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 15-19.
[8] 徐心怡, 曹磊, 刘澄英. 8例鹦鹉热衣原体肺炎临床特征分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 739-741.
[9] 任腾, 刘伟, 焦娇, 李艳燕, 马瑞娜, 房延凤, 金发光. 耶氏肺孢子菌肺炎的临床特征分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 473-476.
[10] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 宏基因组二代测序在脓毒症病原体诊断中的应用进展[J]. 中华重症医学电子杂志, 2023, 09(03): 292-297.
[11] 杨翔, 邱海波. 宏基因组学二代测序技术在重症感染早期抗感染目标性治疗中的一些思考[J]. 中华重症医学电子杂志, 2022, 08(04): 289-290.
[12] 黄建玲, 王丽. 猪链球菌脑膜炎一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 187-189.
[13] 蒲洁琨, 褚明娟, 庞茜茜, 张志华, 张鹤鸣, 汤建华. 张家口地区碳青霉烯耐药铜绿假单胞菌耐药性及其机制分析[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1291-1296.
[14] 张庭秀, 胡绳, 马李杰, 肖贞良. 普雷沃氏菌感染致肺脓肿特征分析[J]. 中华诊断学电子杂志, 2022, 10(04): 234-237.
[15] 裴小华, 张涛, 金柯, 柏云, 高飞, 朱蓓, 赵卫红. 非人类免疫缺陷病毒患者感染肺孢子菌肺炎的诊断学特征并文献复习[J]. 中华诊断学电子杂志, 2022, 10(04): 224-228.
阅读次数
全文


摘要