Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2023, Vol. 19 ›› Issue (06): 675 -682. doi: 10.3877/cma.j.issn.1673-5250.2023.06.008

Original Article

Correlation of patent ductus arteriosus with bronchopulmonary dysplasia in very low birth weight preterm infants

Quanxiu Tian1, Aimin Han1, Yan Xu1,()   

  1. 1. Department of Neonatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
  • Received:2023-10-17 Revised:2023-11-20 Published:2023-12-01
  • Corresponding author: Yan Xu
Objective

To investigate the correlation between the shunt direction and duration of patent ductus arteriosus (PDA) and bronchopulmonary dysplasia (BPD) in preterm infants with very low birth weight(VLBW).

Methods

From January 2020 to June 2023, a total of 193 PDA VLBW preterm infants with birth gestational age <32 weeks and birth weight (BW)<1 500 g who were hospitalized in the Affiliated Hospital of Xuzhou Medical University, were enrolled into this study. Using retrospective analysis method, they were divided into 3 groups based on the echocardiographic results after 7 d of birth: the nhsPDA (non-hemodynamically significant PDA) group (n=89), the hsPDA-lr (hemodynamically significant PDA left to right shunt) group (n=65) and the hsPDA-rl/bd (hemodynamically significant PDA right to left/bidirectional shunt) group (n=39). The general clinical data, complication incidence rates and therapeutic effect among 3 groups of PDA VLBW preterm infants were statistically compared. Independent risk factors affecting the development of BPD and BPD (grades 2-3) in these PDA VLBW preterm infants were analyzed by single-factor and multivariate unconditional logistic regression analysis. The study was approved by the Ethics Committee of the Affiliated Hospital of Xuzhou Medical University (Approval No. XYFY2022-KL302-01), and informed consents were obtained from all guardians of premature infants.

Results

① Compared to PDA VLBW preterm infants in nhsPDA group, PDA VLBW preterm infants in hsPDA-lr group and hsPDA-rl/bd group were all younger in birth gestational age, had lower BW, had higher proportions of infants with birth gestational age ≤28 weeks, tracheal intubation within 24 h, use of pulmonary surfactant (PS), use of vasoactive drugs, use of ibuprofen, PDA shunt duration ≥7 d, BPD, BPD (grades 2-3), intracranial hemorrhage (IVH) (≥grade 3) and retinopathy of premature (ROP), all differences were statistically significant (P<0.05). ② Compared to PDA VLBW preterm infants in hsPDA-lr group, infants in hsPDA-rl/bd group had younger birth gestational age, lower BW, had higher proportions of infants with birth gestational age ≤28 weeks, pulmonary haemorrhage, use of vasoactive drugs, and longer duration of mechanical ventilation, and all differences were statistically significant (P<0.05). ③ Multivariate unconditional logistic regression analysis showed that PDA shunt duration ≥7 d (OR=2.500, 95%CI: 1.121-5.572, P=0.025; OR=3.395, 95%CI: 1.195-9.646, P=0.022) were independent risk factors for the development of BPD and BPD (grades 2-3) of PDA VLBW preterm infants.

Conclusions

The risk of developing BPD and BPD (grades 2-3) in VLBW preterm infants was increased after PDA shunt duration ≥7 d. Early refined management of PDA VLBW preterm infants is clinically significant to evaluate the risk and for the prevention and treatment of BPD.

表1 3组PDA VLBW早产儿孕母临床资料比较[例数(%)]
表2 3组PDA VLBW早产儿临床资料比较
组别 例数 男性[例数(%)] 出生胎龄[周,M(Q1Q3)] 出生胎龄≤28周[例数(%)] BW(g,±s) 小于胎龄儿[例数(%)] 生后5 min Apgar评分<5分[例数(%)]
nhsPDA组 89 52(58.4) 30.5(29.6,31.6) 4(4.5) 1 377±294 5(5.6) 9(10.1)
hsPDA-lr组 65 40(61.5) 29.8(28.5,30.6)a 10(15.4)a 1 208±316a 6(9.2) 13(20.0)
hsPDA-rl/bd组 39 20(51.3) 28.1(27.4,30.1)a,b 19(48.7)a,b 1 159±297a,b 2(5.1) 6(15.4)
统计量   χ2=1.06 Z=30.96 χ2=37.62 F=9.60 χ2=0.98 χ2=2.99
P   0.588 <0.001 <0.001 <0.001 0.612 0.224
组别 例数 24 h内气管插管[例数(%)] PS使用[例数(%)] 肺出血[例数(%)] 血管活性药物使用[例数(%)] 布洛芬使用[例数(%)] PDA分流时间≥7 d [例数(%)] 机械通气时间[d,M(Q1Q3)]
nhsPDA组 89 58(65.2) 57(64.0) 2(2.2) 8(9.0) 0(0) 39(36.7) 5(0,10)
hsPDA-lr组 65 54(83.1)a 53(81.5)a 5(7.7) 28(43.1)a 38(58.5)a 53(81.5)a 11(7,16)
hsPDA-rl/bd组 39 37(94.9)a 35(89.7)a 10(25.6)a,b 31(79.2)a,b 28(71.8)a 36(92.3)a 19(10,28)a,b
统计量   χ2=15.52 χ2=11.74 χ2=18.63 χ2=62.49 χ2=87.76 χ2=48.05 Z=50.28
P   0.003 0.003 <0.001 <0.001 <0.001 <0.001 <0.001
组别 例数 PN时间[d,M(Q1Q3)] BPD[例数(%)] BPD(2~3级)[例数(%)] IVH(≥3级)[例数(%)] NEC(≥Ⅱ期)[例数(%)] ROP[例数(%)]
nhsPDA组 89 16(11,25) 27(30.3) 21(23.6) 3(3.4) 2(2.2) 3(3.4)
hsPDA-lr组 65 20(15,29) 42(64.6)a 34(52.3)a 9(13.8)a 1(1.5) 12(18.5)a
hsPDA-rl/bd组 39 22(16,35)a 31(79.5)a 26(66.7)a 6(15.4)a 3(7.7) 13(33.3)a
统计量   Z=12.45 χ2=32.62 χ2=24.96 χ2=7.00 χ2=3.47 χ2=20.86
P   0.002 <0.001 <0.001 0.030 0.176 <0.001
表3 193例PDA VLBW早产儿发生BPD的多因素非条件logistic回归分析结果
表4 193例PDA VLBW早产儿发生BPD(2~3级)的多因素非条件logistic回归分析结果
[1]
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. DOI: 10.1001/jama.2015.10244.
[2]
Semberova J, Sirc J, Miletin J, et al. Spontaneous closure of patent ductus arteriosus in infants ≤1 500 g[J]. Pediatrics, 2017, 140(2): e20164258. DOI: 10.1542/peds.2016-4258.
[3]
Benitz WE, Committee on Fetus and Newborn, American Academy of Pediatrics. Patent ductus arteriosus in preterm infants[J]. Pediatrics, 2016, 137(1): 10.1542/peds.2015-3730. DOI: 10.1542/peds.2015-3730.
[4]
Schena F, Francescato G, Cappelleri A, et al. Association between hemodynamically significant patent ductus arteriosus and bronchopulmonary dysplasia[J]. J Pediatr, 2015, 166(6): 1488-1492. DOI: 10.1016/j.jpeds.2015.03.012.
[5]
Prescott S, Keim-Malpass J. Patent ductus arteriosus in the preterm infant: diagnostic and treatment options[J]. Adv Neonatal Care, 2017, 17(1): 10-18. DOI: 10.1097/ANC.0000000000000340.
[6]
Jobe AH, Bancalari E. Bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2001, 163(7): 1723-1729. DOI: 10.1164/ajrccm.163.7.2011060.
[7]
邵肖梅,叶鸿瑁,丘小汕. 实用新生儿学[M]. 5版. 北京:人民卫生出版社,2019.
[8]
Clyman RI, Hills NK. The effect of prolonged tracheal intubation on the association between patent ductus arteriosus and bronchopulmonary dysplasia (grades 2 and 3)[J]. J Perinatol, 2020, 40(9): 1358-1365. DOI: 10.1038/s41372-020-0718-x.
[9]
Clyman RI, Hills NK, Cambonie G, et al. Patent ductus arteriosus, tracheal ventilation, and the risk of bronchopulmonary dysplasia[J]. Pediatr Res, 2022, 91(3): 652-658. DOI: 10.1038/s41390-021-01475-w.
[10]
Wang SH, Tsao PN. Phenotypes of bronchopulmonary dysplasia[J]. Int J Mol Sci, 2020, 21(17): 6112. DOI: 10.3390/ijms21176112.
[11]
Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia[J]. BMJ, 2021, 375: n1974. DOI: 10.1136/bmj.n1974.
[12]
Hamrick SEG, Sallmon H, Rose AT, et al. Patent ductus arteriosus of the preterm infant[J]. Pediatrics, 2020, 146(5): e20201209. DOI: 10.1542/peds.2020-1209.
[13]
Hundscheid T, van den Broek M, van der Lee R, et al. Understanding the pathobiology in patent ductus arteriosus in prematurity-beyond prostaglandins and oxygen[J]. Pediatr Res, 2019, 86(1): 28-38. DOI: 10.1038/s41390-019-0387-7.
[14]
Willis KA, Weems MF. Hemodynamically significant patent ductus arteriosus and the development of bronchopulmonary dysplasia[J]. Congenit Heart Dis, 2019, 14(1): 27-32. DOI: 10.1111/chd.12691.
[15]
Sehgal A, McNamara PJ. Does echocardiography facilitate determination of hemodynamic significance attributable to the ductus arteriosus?[J]. Eur J Pediatr, 2009, 168(8): 907-914. DOI: 10.1007/s00431-009-0983-3.
[16]
中华医学会儿科学分会新生儿学组,《中华儿科杂志》编辑委员会. 新生儿肺动脉高压诊治专家共识[J]. 中华儿科杂志2017, 55(3): 163-168. DOI: 10.3760/cma.j.issn.0578-1310.2017.03.002.
[17]
Kim YJ, Shin SH, Park HW, et al. Risk factors of early pulmonary hypertension and its clinical outcomes in preterm infants: a systematic review and Meta-analysis[J]. Sci Rep, 2022, 12(1): 14186. DOI: 10.1038/s41598-022-18345-y.
[18]
Mirza H, Garcia JA, Crawford E, et al. Natural history of postnatal cardiopulmonary adaptation in infants born extremely preterm and risk for death or bronchopulmonary dysplasia[J]. J Pediatr, 2018, 198: 187-193.e1. DOI: 10.1016/j.jpeds.2018.02.034.
[19]
Ethington PN, Smith PB, Katakam L, et al. Treatment of patent ductus arteriosus with bidirectional flow in neonates[J]. Early Hum Dev, 2011, 87(5): 381-384. DOI: 10.1016/j.earlhumdev.2011.02.005.
[20]
Ansems SM, Kirpalani H, Mercer-Rosa L, et al. Patent ductus arteriosus and the effects of its late closure in preterm infants with severe bronchopulmonary dysplasia[J]. Neonatology, 2019, 116(3): 236-243. DOI: 10.1159/000500269.
[21]
Clyman RI, Hills NK, Liebowitz M, et al. Relationship between duration of infant exposure to a moderate-to-large patent ductus arteriosus shunt and the risk of developing bronchopulmonary dysplasia or death before 36 weeks[J]. Am J Perinatol, 2020, 37(2): 216-223. DOI: 10.1055/s-0039-1697672.
[22]
Backes CH, Hill KD, Shelton EL, et al. Patent ductus arteriosus: a contemporary perspective for the pediatric and adult cardiac care provider[J]. J Am Heart Assoc, 2022, 11(17): e025784. DOI: 10.1161/JAHA.122.025784.
[23]
Deng Y, Zhang H, Zhao Z, et al. Impact of patent ductus arteriosus shunt size and duration on risk of death or severe respiratory morbidity in preterm infants born in China[J]. Eur J Pediatr, 2022, 181(8): 3131-3140. DOI: 10.1007/s00431-022-04549-x.
[24]
Hundscheid T, Onland W, Kooi EMW, et al. Expectant management or early ibuprofen for patent ductus arteriosus[J]. N Engl J Med, 2023, 388(11): 980-990. DOI: 10.1056/NEJMoa2207418.
[25]
Mitra S, Scrivens A, von Kursell AM, et al. Early treatment versus expectant management of hemodynamically significant patent ductus arteriosus for preterm infants[J]. Cochrane Database Syst Rev, 2020, 12(12): CD013278. DOI: 10.1002/14651858.CD013278.pub2.
[26]
El-Khuffash A, Bussmann N, Breatnach CR, et al. A pilot randomized controlled trial of early targeted patent ductus arteriosus treatment using a risk based severity score (the PDA RCT)[J]. J Pediatr, 2021, 229: 127-133. DOI: 10.1016/j.jpeds.2020.10.024.
[27]
Liebowitz M, Clyman RI. Prophylactic indomethacin compared with delayed conservative management of the patent ductus arteriosus in extremely preterm infants: effects on neonatal outcomes[J]. J Pediatr, 2017, 187: 119-126.e1. DOI: 10.1016/j.jpeds.2017.03.021.
[28]
Kaempf JW, Wu YX, Kaempf AJ, et al. What happens when the patent ductus arteriosus is treated less aggressively in very low birth weight infants?[J]. J Perinatol, 2012, 32(5): 344-348. DOI: 10.1038/jp.2011.102.
[1] Jian Deng, Shaohua Wang, Zun Chen, Zhenzhuang Zou. Mechanism of Keap1/Nrf2 pathway in role of intrauterine infection induced by lipopolysaccharide leading to bronchopulmonary dysplasia in neonatal rats[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 665-674.
[2] Zhengyun Hu, Jianwei Shi, Jianwei Shen, Bing Wang, Chunmiao Jiang, Chong Liu. Identification of hub genes associated with bronchopulmonary dysplasia in preterm infants based on machine learning[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 446-454.
[3] Ping Yang, Shimin Xu, Liangliang Li, Xiangyun Yin, Hongmin Xi, Lili Ma, Xianghong Li. Influencing factors of bronchopulmonary dysplasia complicated with metabolic bone disease in preterm infants[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(02): 202-211.
[4] Bing Yuan, Kai Yan. Current research status in treatment of preterm infants with bronchopulmonary dysplasia by human amniotic epithelial stem cells[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 640-644.
[5] Jinli Yan, Dapeng Chen. Research progress on probiotics in clinical application of neonatal respiratory diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 517-522.
[6] Hongling Fu, Hanmin Liu. Research progress on signaling pathways involved in bronchopulmonary dysplasia and pulmonary hypertension[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 497-505.
[7] Yan Liu, Ming Zhao, Hong Jiang, Chen Chen, Xiaoqin Wang, Lei Zhang. Risk factors of bronchopulmonary dysplasia in very preterm infants: a multicenter study[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(04): 419-426.
[8] Haiyang Zhang, Hanmin Liu. Current research status on developmental trajectory of lung in premature infants[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(04): 373-379.
[9] Sisi Wang, Jinlin Wu. Research progresses of hyperoxia-induced injury of pulmonary vascular endothelial cells in bronchopulmonary dysplasia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(03): 368-372.
[10] Shaodong Hua, Zhenhui Zhou, Shumei Wang, Jia Chen, Yabo Mei, Qiuping Li, Zhichun Feng. Hemolytic anemia due to unrelated umbilical cord blood stem cell transplantation for extreme premature infants bronchopulmonary dysplasia and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(02): 202-208.
[11] Jinhui Li, Dezhi Mu. Hot issues in clinical management of premature infants[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(01): 1-7.
[12] Dan Zhou, Fang Shi, Hanmin Liu. Current research status on biomarkers of " new" bronchopulmonary dysplasia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2019, 15(04): 357-362.
[13] Feng Yang, Ling Xie, Qiulan Lin. Risk factors of intrauterine infective pneumonia and bronchopulmonary dysplasia in premature infants[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2020, 14(04): 326-330.
[14] Mingjing Lin, Dong Cai, Wenting Feng, Fangfang Wu, Kaiyan Zhang. Risk factors for bronchopulmonary dysplasia in premature infants born from 2017 to 2019[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(09): 908-913.
[15] Hongjuan Bi, Lijuan Long, Liping Huang, Yisi Huang, Zengshuai Huang, Qiufen Wei. Comparison of clinical features of different degrees of bronchopulmonary dysplasia in very/extremely low birth weight infants[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(01): 66-70.
Viewed
Full text


Abstract