Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2022, Vol. 18 ›› Issue (05): 497 -505. doi: 10.3877/cma.j.issn.1673-5250.2022.05.001

Forum

Research progress on signaling pathways involved in bronchopulmonary dysplasia and pulmonary hypertension

Hongling Fu, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Vascular Remodeling and Developmental Defects Research Unit of West China Institutes for Women and Children′s Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2021-11-30 Revised:2022-07-30 Published:2022-10-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    National Key Research and Development Program of China(2017YFC0211705)

Bronchopulmonary dysplasia (BPD) is the most common complication of premature infants. About 25% children with moderate to severe BPD may be complicated with BPD-associated pulmonary hypertension (PH), which is the main reason that affects survival rate and life quality of children with BPD in the future. At present, prevention and treatments for BPD and BPD-associated PH are so limited that it is urgent to investigate its pathogenesis and subsequently targeted treatment. In recent years, many studies have found abnormalities in many signaling pathways during the development of BPD and BPD-associated PH, such as angiopoietin (Ang), vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β, Wnt, connective tissue growth factor (CTGF), fibroblast growth factor (FGF)10, microRNA (miRNA), and caveolin (Cav)-1-related signaling pathways. All these findings could deepen the understanding of pathogenesis of BPD and BPD-associated PH and provide new ideas of the treatment. This paper reviews the current researches of signaling pathways involved in BPD and BPD-associated PH.

[1]
Goss KN, Everett AD, Mourani PM, et al. Addressing the challenges of phenotyping pediatric pulmonary vascular disease[J]. Pulm Circ, 2017, 7(1): 7-19. DOI: 10.1086/689750.
[2]
Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network[J]. Pediatrics, 2010, 126(3): 443-456. DOI: 10.1542/peds.2009-2959.
[3]
Weismann CG, Asnes JD, Bazzy-Asaad A, et al. Pulmonary hypertension in preterm infants: results of a prospective screening program[J]. J Perinat, 2017, 37(1): 572-577. DOI: 10.1038/jp.2016.255.
[4]
Altit G, Bhombal S, Feinstein J, et al. Diminished right ventricular function at diagnosis of pulmonary hypertension is associated with mortality in bronchopulmonary dysplasia[J]. Pulm Circ, 2019, 9(3): 2045894019878598. DOI: 10.1177/2045894019878598.
[5]
Meinel K, Koestenberger M, Sallmon H,et al. Echocardiography for the assessment of pulmonary hypertension and congenital heart disease in the young[J]. Diagnostics (Basel), 2020, 11(1): 49. DOI: 10.3390/diagnostics11010049.
[6]
Schweintzger S, Koestenberger M, Schlagenhauf A, et al. Safety and efficacy of the endothelin receptor antagonist macitentan in pediatric pulmonary hypertension[J]. Cardiovasc Diagn Ther, 2020, 10(5): 1675-1685. DOI: 10.21037/cdt.2020.04.01.
[7]
Kapiainen E, Kihlström MK, Pietilä R, et al. The amino-terminal oligomerization domain of angiopoietin-2 affects vascular remodeling, mammary gland tumor growth, and lung metastasis in mice[J]. Cancer Res, 2021, 81(1): 129-143. DOI: 10.1158/0008-5472.CAN-19-1904.
[8]
王玲,吕回,李美雪. 血管生成素-1在高氧诱导新生鼠支气管肺发育不良的表达及与肺发育的关系[J]. 临床儿科杂志2014, 32(4): 355-359. DOI: 10.3969/j.issn.1000-3606.2014.04.017.
[9]
Kim DH, Kim HS. Serial changes of serum endostatin and angiopoietin-1 levels in preterm infants with severe bronchopulmonary dysplasia and subsequent pulmonary artery hypertension[J]. Neonatology, 2014, 106(1): 55-61. DOI: 10.1159/000358374.
[10]
Thomas W, Seidenspinner S, Kramer BW, et al. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome[J]. Pediatr Pulmonol, 2011, 46(8): 777-784. DOI: 10.1002/ppul.21435.
[11]
Miao H, Qiu F, Zhu L, et al. Novel angiogenesis strategy to ameliorate pulmonary hypertension[J]. J Thorac Cardiovasc Surg, 2020161(6): e417-e434. DOI: 10.1016/j.jtcvs.2020.03.044.
[12]
Tomita K, Saito Y, Suzuki T, et al. Vascular endothelial growth factor contributes to lung vascular hyperpermeability in sepsis-associated acute lung injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(12): 2365-2374. DOI: 10.1007/s00210-020-01947-6.
[13]
Korzeniewski SJ, Romero R, Chaiworapongsa T, et al. Maternal plasma angiogenic index-1 (placental growth factor/soluble VEGF receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study[J]. Am J Obstet Gynecol, 2016, 214(5): 629.e1-629.e17. DOI: 10.1016/j.ajog.2015.11.015.
[14]
Stevens M, Oltean S. Modulation of receptor tyrosine kinase activity through alternative splicing of ligands and receptors in the VEGF-A/VEGFR axis[J]. Cells, 2019, 8(4): 288. DOI: 10.3390/cells8040288.
[15]
Cai X, Wei B, Li L, et al. Therapeutic potential of apatinib against colorectal cancer by inhibiting VEGFR2-mediated angiogenesis and β-catenin signaling[J]. Onco Targets Ther, 2020, 13: 11031-11044. DOI: 10.2147/OTT.S266549.
[16]
Saeed A, Park R, Sun W. The integration of immune checkpoint inhibitors with VEGF targeted agents in advanced gastric and gastroesophageal adenocarcinoma: a review on the rationale and results of early phase trials[J]. J Hematol Oncol, 2021, 14(1): 13. DOI: 10.1186/s13045-021-01034-0.
[17]
Winter MP, Sharma S, Altmann J, et al. Interruption of vascular endothelial growth factor receptor 2 signaling induces a proliferative pulmonary vasculopathy and pulmonary hypertension[J]. Basic Res Cardiol, 2020, 115(6): 58. DOI: 10.1007/s00395-020-0811-5.
[18]
Le Cras TD, Markham NE, Tuder RM, et al. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure[J]. Am J Physiol Lung Cell Mol Physiol, 2002, 283(3): L555-L562. DOI: 10.1152/ajplung.00408.2001.
[19]
Mourani PM, Mandell EW, Meier M, et al. Early pulmonary vascular disease in preterm infants is associated with late respiratory outcomes in childhood[J]. :1020-1027. DOI: 10.1164/rccm.201803-0428OC.
[20]
Mourani PM, Sontag MK, Younoszai A, et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2015, 191(1): 87-95. DOI: 10.1164/rccm.201409-1594OC.
[21]
Mestan KK, Gotteiner N, Prota N, et al. Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension[J]. J Pediatr, 2017, 185: 33-41. DOI: 10.1016/j.jpeds.2017.01.015.
[22]
Wallace B, Peisl A, Seedorf G, et al. Anti-sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2018, 197(6): 776-787. DOI: 10.1164/rccm.201707-1371OC.
[23]
Noe N, Shim A, Millette K, et al. Mesenchyme-specific deletion of TGF-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia[J]. Lab Invest, 2019, 99(9): 1363-1375. DOI: 10.1038/s41374-019-0256-3.
[24]
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. DOI: 10.1016/j.cbi.2018.07.008.
[25]
Correll KA, Edeen KE, Zemans RL, et al. TGF beta inhibits expression of SP-A, SP-B, SP-C, but not SP-D in human alveolar type Ⅱ cells[J]. Biochem Biophys Res Commun, 2018, 499(4): 843-848. DOI: 10.1016/j.bbrc.2018.04.003.
[26]
Liu Y, Cao Y, Sun S, et al. Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways[J]. Int J Biochemistr Cell Biol, 2016, 77(PtA): 141-154. DOI: 10.1016/j.biocel.2016.06.006.
[27]
Tian W, Jiang X, Sung YK, et al. Phenotypically silent bone morphogenetic protein receptor 2 mutations predispose rats to inflammation-induced pulmonary arterial hypertension by enhancing the risk for neointimal transformation[J]. Circulation, 2019, 140(17): 1409-1425. DOI: 10.1161/CIRCULATIONAHA.119.040629.
[28]
Tielemans B, Delcroix M, Belge C, et al. TGFβ and BMPRII signaling pathways in the pathogenesis of pulmonary arterial hypertension[J]. Drug Discov Today, 2019, 24(3): 703-716. DOI: 10.1016/j.drudis.2018.12.001.
[29]
Hiepen C, Jatzlau J, Hildebrandt S, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics[J]. PLoS Biol, 2019, 17(12): e3000557. DOI: 10.1371/journal.pbio.3000557.
[30]
Zhang M, Shi J, Huang Y, et al. Expression of canonical WNT/β-CATENIN signaling components in the developing human lung[J]. BMC Dev Biol, 2012, 12: 21. DOI: 10.1186/1471-213X-12-21.
[31]
Frank DB, Peng T, Zepp JA, et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation[J]. Cell Rep, 2016, 17(9): 2312-2325. DOI: 10.1016/j.celrep.2016.11.001.
[32]
Jia X, Wu B, Huang J, et al. YAP and Wnt3a independently promote AECIIs proliferation and differentiation by increasing nuclear βcatenin expression in experimental bronchopulmonary dysplasia[J]. Int J Mol Med, 2020, 47(1): 195-206. DOI: 10.3892/ijmm.2020.4791.
[33]
Yuan K, Shamskhou EA, Orcholski ME, et al. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension[J]. Circulation, 2019, 139(14): 1710-1724. DOI: 10.1161/CIRCULATIONAHA.118.037642.
[34]
Chen Z, Zhang N, Chu HY, et al. Connective tissue growth factor: from molecular understandings to drug discovery[J]. Front Cell Dev Biol, 2020, 8: 593269. DOI: 10.3389/fcell.2020.593269.
[35]
Chen S, Rong M, Platteau A, et al. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 300(3): L330-L340. DOI: 10.1152/ajplung.00270.2010.
[36]
Wu S, Platteau A, Chen S, et al. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development[J]. Am J Respir Cell Mol Biol, 2010, 42(5): 552-563. DOI: 10.1165/rcmb.2009-0068OC.
[37]
Wang X, Cui H, Wu S. CTGF: a potential therapeutic target for bronchopulmonary dysplasia[J]. Eur J Pharmacol, 2019, 860: 172588. DOI: 10.1016/j.ejphar.2019.172588.
[38]
Rong M, Chen S, Zambrano R, et al. Inhibition of β-catenin signaling protects against CTGF-induced alveolar and vascular pathology in neonatal mouse lung[J]. Pediatr Res, 2016, 80(1): 136-144. DOI: 10.1038/pr.2016.52.
[39]
Chen X, Zhao C, Zhang C, et al. Vagal-α7nAChR signaling promotes lung stem cells regeneration via fibroblast growth factor 10 during lung injury repair[J]. Stem Cell Res Ther, 2020, 11(1): 230. DOI: 10.1186/s13287-020-01757-w.
[40]
Gupte VV, Ramasamy SK, Reddy R, et al. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice[J]. Am J Respir Crit Care Med, 2009, 180(5): 424-436. DOI: 10.1164/rccm.200811-1794OC.
[41]
Acosta JM, Thebaud B, Castillo C, et al. Novel mechanisms in murine nitrofen-induced pulmonary hypoplasia: FGF-10 rescue in culture[J]. Am J Physiol Lung Cell Mol Physiol, 2001, 281(1): 250-257. DOI: 10.1152/ajplung.2001.281.1.L250.
[42]
Chao CM, Yahya F, Moiseenko A, et al. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia[J]. J Pathol, 2017, 241(1): 91-103. DOI: 10.1002/path.4834.
[43]
Mohamed WA, Aseeri MA. Cord blood fibroblast growth factor-10 as a possible predictor of bronchopulmonary dysplasia in preterm infants[J]. J Neonatal Perinatal Med, 2014, 7(2): 101-105. DOI: 10.3233/NPM-1476613.
[44]
Xing Y, Fu J, Yang H, et al. MicroRNA expression profiles and target prediction in neonatal Wistar rat lungs during the development of bronchopulmonary dysplasia[J]. Int J Mol Med, 2015, 36(5): 1253-1263. DOI: 10.3892/ijmm.2015.2347.
[45]
孙祎璠,马俐,龚小慧,等. 基于生物信息学分析microRNA-495-5p在早产儿支气管肺发育不良中的表达及其临床意义[J]. 中国当代儿科杂志2020, 22(1): 24-30. DOI: 10.7499/j.issn.1008-8830.2020.01.006.
[46]
Gong X, Qiu J, Qiu G,et al. Adrenomedullin regulated by miRNA-574-3p protects premature infants with bronchopulmonary dysplasia[J]. Biosci Rep, 2020, 40(5): BSR20191879. DOI: 10.1042/BSR20191879.
[47]
Brock M, Samillan VJ, Trenkmann M,et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension[J]. Eur Heart J, 2014, 35(45): 3203-3211. DOI: 10.1093/eurheartj/ehs060.
[48]
Syed M, Das P, Pawar A, et al. Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs[J]. Nat Commun, 2017, 8(1): 1173. DOI: 10.1038/s41467-017-01349-y.
[49]
Dong Y, Zhang X. Integrative analysis of lncRNAs, miRNAs, and mRNAs-associated ceRNA network in a neonatal mouse model of bronchopulmonary dysplasia[J]. J Matern Fetal Neonatal Med, 2020, 34(19): 3234-3245. DOI: 10.1080/14767058.2020.1815700.
[50]
Yuan, HS, Xiong, DQ, Huang, F, et al. MicroRNA-421 inhibition alleviates bronchopulmonary dysplasia in a mouse model via targeting Fgf10[J]. J Cell Biochem, 2019, 120(10): 16876-16887. DOI; 10.1002/jcb.28945.
[51]
Mathew R. Signaling pathways involved in the development of bronchopulmonary dysplasia and pulmonary hypertension[J]. Children (Basel), 2020, 7(8): 100. DOI: 10.3390/children7080100.
[52]
徐姝燕,富建华. 小窝蛋白-1与疾病[J]. 国际儿科学杂志2017, 44(7): 443-446. DOI: 10.3760/cma.j.issn.1673-4408.2017.07.001.
[53]
Gosens R, Mutawe M, Martin S, et al. Caveolae and caveolins in the respiratory system[J]. Curr Mol Med, 2008, 8(8): 741-753. DOI: 10.2174/156652408786733720.
[54]
Kunzmann S, Collins JJ, Yang Y, et al. Antenatal inflammation reduces expression of caveolin-1 and influences multiple signaling pathways in preterm fetal lungs[J]. Am J Respir Cell Mol Biol, 2011, 45(5): 969-976. DOI: 10.1165/rcmb.2010-0519OC.
[55]
Huang J, Wolk JH, Gewitz MH, et al. Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension[J]. Exp Lung Res, 2010, 36(1): 57-66. DOI: 10.3109/01902140903104793.
[56]
Mathew R, Huang J, Katta US, et al. Immunosuppressant-induced endothelial damage and pulmonary arterial hypertension[J]. J Pediatr Hematol Oncol, 2011, 33(1): 55-58. DOI: 10.1097/MPH.0b013e3181ec0ede.
[1] Xiaoli Yi, Shasha Hu, Yan Zhang. Impact of HER-2 low expression on response of neoadjuvant chemotherapy and prognosis in breast cancer patients[J]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(06): 340-346.
[2] Jie Shi, Yuntao Li, Haiyan Gao. Prognosis of node-positive luminal A breast cancer patients with neoadjuvant and adjuvant chemotherapy and influencing factors[J]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(06): 353-361.
[3] The Joint Surgery Branch of the Chinese Orthopedic Association, Guangdong’s Medical Association of Osteoporosis And Bone Mineral Research, Foshan Shunde 3rd Peoele’s Hospital. Clinical intervention guideline for using of anti-osteoporosis drugs in postoperative fragile hip fractures in China (2023 Edition)[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(06): 751-764.
[4] Wei Zhang. Dentoalveolar surgery: The pioneer of comfortable treatment[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2023, 17(06): 386-388.
[5] Dechen Wang, Kang Yang, Zijie Yang, Mingbin Gui, Lianping Qu, Xiaofeng Zhang, Feng Gao. Progress of microsatellite stability state and PD-1/PD-L1/IDO in colorectal carcinoma[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(06): 462-465.
[6] Yanhui Zhang, Jiao Zhang, Zhixian Zhu. Effect of indwelling anal tube on anastomotic leakage after laparoscopic total mesangectomy after neoadjuvant chemoradiotherapy in patients with middle and low rectal cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2024, 18(01): 25-28.
[7] Zhibo Gu, lin Hao, Ming Lu, Jiangang Chen. Photodynamic nanocarriers combined with siP3H4 for precise targeting therapy in the treatment of bladder cancer: a pilot study[J]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(06): 633-641.
[8] Bo Kong, Jing Zhang, Ke Lyu. Review on the role of ultrasonography in the diagnosis and treatment of complex ventral hernia[J]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2023, 17(06): 670-673.
[9] Xiaoyong Wei. Discussion on the focus issues of conversion therapy for primary liver cancer[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(06): 602-607.
[10] Chenrui Wu, Rui Liao, Qiang He. Hepatic arterial infusion chemotherapy combined immunotargeted therapy for multiple metastatic hepatocellular carcinoma in a multi-disciplinary treatment model: a case report[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(06): 713-716.
[11] Xilin Du, Kai Tan, Xiaojun He. Conversion therapies for hepatocellular carcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(06): 597-601.
[12] Huiying Ma, Xinling Fan, Shirui Tan, Jiayun Chen, Ying Cao, Yuan Xu, Jing Jin, Yuan Tang. Magnetic resonance linac for locally advanced rectal cancer: a preliminary experience[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(06): 519-523.
[13] Ruixue Yue, Lingxin Kong, Xin Hao, Jinqiang Yang, Meng Han, Guozhong Cui, Jianjun Wang, Zhisheng Zhang, Fanting Kong, Wei Zhang, Wenbo He, Xianqiao Li, Xinping Zhou, Donghong Xu, Chongzhu Hu. HER2 protein expression levels predict efficacy of neoadjuvant therapy in breast cancer: A real-world study[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(07): 765-770.
[14] Meisha Fu, Yuhua Zhou, Hui Li, Chunyan Xue. Effect of lymphocyte immunotherapy on T lymphocyte subset distribution and PD1/PD-L1 expression in patients with recurrent miscarriage[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(06): 726-730.
[15] Yingqian Li, Huashan Li. Evaluation of treatment methods for complete rectal prolapse: a real world study[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(06): 700-705.
Viewed
Full text


Abstract