[1] |
Goss KN, Everett AD, Mourani PM, et al. Addressing the challenges of phenotyping pediatric pulmonary vascular disease[J]. Pulm Circ, 2017, 7(1): 7-19. DOI: 10.1086/689750.
|
[2] |
Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network[J]. Pediatrics, 2010, 126(3): 443-456. DOI: 10.1542/peds.2009-2959.
|
[3] |
Weismann CG, Asnes JD, Bazzy-Asaad A, et al. Pulmonary hypertension in preterm infants: results of a prospective screening program[J]. J Perinat, 2017, 37(1): 572-577. DOI: 10.1038/jp.2016.255.
|
[4] |
Altit G, Bhombal S, Feinstein J, et al. Diminished right ventricular function at diagnosis of pulmonary hypertension is associated with mortality in bronchopulmonary dysplasia[J]. Pulm Circ, 2019, 9(3): 2045894019878598. DOI: 10.1177/2045894019878598.
|
[5] |
Meinel K, Koestenberger M, Sallmon H,et al. Echocardiography for the assessment of pulmonary hypertension and congenital heart disease in the young[J]. Diagnostics (Basel), 2020, 11(1): 49. DOI: 10.3390/diagnostics11010049.
|
[6] |
Schweintzger S, Koestenberger M, Schlagenhauf A, et al. Safety and efficacy of the endothelin receptor antagonist macitentan in pediatric pulmonary hypertension[J]. Cardiovasc Diagn Ther, 2020, 10(5): 1675-1685. DOI: 10.21037/cdt.2020.04.01.
|
[7] |
Kapiainen E, Kihlström MK, Pietilä R, et al. The amino-terminal oligomerization domain of angiopoietin-2 affects vascular remodeling, mammary gland tumor growth, and lung metastasis in mice[J]. Cancer Res, 2021, 81(1): 129-143. DOI: 10.1158/0008-5472.CAN-19-1904.
|
[8] |
|
[9] |
Kim DH, Kim HS. Serial changes of serum endostatin and angiopoietin-1 levels in preterm infants with severe bronchopulmonary dysplasia and subsequent pulmonary artery hypertension[J]. Neonatology, 2014, 106(1): 55-61. DOI: 10.1159/000358374.
|
[10] |
Thomas W, Seidenspinner S, Kramer BW, et al. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome[J]. Pediatr Pulmonol, 2011, 46(8): 777-784. DOI: 10.1002/ppul.21435.
|
[11] |
Miao H, Qiu F, Zhu L, et al. Novel angiogenesis strategy to ameliorate pulmonary hypertension[J]. J Thorac Cardiovasc Surg, 2020, 161(6): e417-e434. DOI: 10.1016/j.jtcvs.2020.03.044.
|
[12] |
Tomita K, Saito Y, Suzuki T, et al. Vascular endothelial growth factor contributes to lung vascular hyperpermeability in sepsis-associated acute lung injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(12): 2365-2374. DOI: 10.1007/s00210-020-01947-6.
|
[13] |
Korzeniewski SJ, Romero R, Chaiworapongsa T, et al. Maternal plasma angiogenic index-1 (placental growth factor/soluble VEGF receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study[J]. Am J Obstet Gynecol, 2016, 214(5): 629.e1-629.e17. DOI: 10.1016/j.ajog.2015.11.015.
|
[14] |
Stevens M, Oltean S. Modulation of receptor tyrosine kinase activity through alternative splicing of ligands and receptors in the VEGF-A/VEGFR axis[J]. Cells, 2019, 8(4): 288. DOI: 10.3390/cells8040288.
|
[15] |
Cai X, Wei B, Li L, et al. Therapeutic potential of apatinib against colorectal cancer by inhibiting VEGFR2-mediated angiogenesis and β-catenin signaling[J]. Onco Targets Ther, 2020, 13: 11031-11044. DOI: 10.2147/OTT.S266549.
|
[16] |
Saeed A, Park R, Sun W. The integration of immune checkpoint inhibitors with VEGF targeted agents in advanced gastric and gastroesophageal adenocarcinoma: a review on the rationale and results of early phase trials[J]. J Hematol Oncol, 2021, 14(1): 13. DOI: 10.1186/s13045-021-01034-0.
|
[17] |
Winter MP, Sharma S, Altmann J, et al. Interruption of vascular endothelial growth factor receptor 2 signaling induces a proliferative pulmonary vasculopathy and pulmonary hypertension[J]. Basic Res Cardiol, 2020, 115(6): 58. DOI: 10.1007/s00395-020-0811-5.
|
[18] |
Le Cras TD, Markham NE, Tuder RM, et al. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure[J]. Am J Physiol Lung Cell Mol Physiol, 2002, 283(3): L555-L562. DOI: 10.1152/ajplung.00408.2001.
|
[19] |
Mourani PM, Mandell EW, Meier M, et al. Early pulmonary vascular disease in preterm infants is associated with late respiratory outcomes in childhood[J]. :1020-1027. DOI: 10.1164/rccm.201803-0428OC.
|
[20] |
Mourani PM, Sontag MK, Younoszai A, et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2015, 191(1): 87-95. DOI: 10.1164/rccm.201409-1594OC.
|
[21] |
Mestan KK, Gotteiner N, Prota N, et al. Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension[J]. J Pediatr, 2017, 185: 33-41. DOI: 10.1016/j.jpeds.2017.01.015.
|
[22] |
Wallace B, Peisl A, Seedorf G, et al. Anti-sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2018, 197(6): 776-787. DOI: 10.1164/rccm.201707-1371OC.
|
[23] |
Noe N, Shim A, Millette K, et al. Mesenchyme-specific deletion of TGF-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia[J]. Lab Invest, 2019, 99(9): 1363-1375. DOI: 10.1038/s41374-019-0256-3.
|
[24] |
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. DOI: 10.1016/j.cbi.2018.07.008.
|
[25] |
Correll KA, Edeen KE, Zemans RL, et al. TGF beta inhibits expression of SP-A, SP-B, SP-C, but not SP-D in human alveolar type Ⅱ cells[J]. Biochem Biophys Res Commun, 2018, 499(4): 843-848. DOI: 10.1016/j.bbrc.2018.04.003.
|
[26] |
Liu Y, Cao Y, Sun S, et al. Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways[J]. Int J Biochemistr Cell Biol, 2016, 77(PtA): 141-154. DOI: 10.1016/j.biocel.2016.06.006.
|
[27] |
Tian W, Jiang X, Sung YK, et al. Phenotypically silent bone morphogenetic protein receptor 2 mutations predispose rats to inflammation-induced pulmonary arterial hypertension by enhancing the risk for neointimal transformation[J]. Circulation, 2019, 140(17): 1409-1425. DOI: 10.1161/CIRCULATIONAHA.119.040629.
|
[28] |
Tielemans B, Delcroix M, Belge C, et al. TGFβ and BMPRII signaling pathways in the pathogenesis of pulmonary arterial hypertension[J]. Drug Discov Today, 2019, 24(3): 703-716. DOI: 10.1016/j.drudis.2018.12.001.
|
[29] |
Hiepen C, Jatzlau J, Hildebrandt S, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics[J]. PLoS Biol, 2019, 17(12): e3000557. DOI: 10.1371/journal.pbio.3000557.
|
[30] |
Zhang M, Shi J, Huang Y, et al. Expression of canonical WNT/β-CATENIN signaling components in the developing human lung[J]. BMC Dev Biol, 2012, 12: 21. DOI: 10.1186/1471-213X-12-21.
|
[31] |
Frank DB, Peng T, Zepp JA, et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation[J]. Cell Rep, 2016, 17(9): 2312-2325. DOI: 10.1016/j.celrep.2016.11.001.
|
[32] |
Jia X, Wu B, Huang J, et al. YAP and Wnt3a independently promote AECIIs proliferation and differentiation by increasing nuclear βcatenin expression in experimental bronchopulmonary dysplasia[J]. Int J Mol Med, 2020, 47(1): 195-206. DOI: 10.3892/ijmm.2020.4791.
|
[33] |
Yuan K, Shamskhou EA, Orcholski ME, et al. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension[J]. Circulation, 2019, 139(14): 1710-1724. DOI: 10.1161/CIRCULATIONAHA.118.037642.
|
[34] |
Chen Z, Zhang N, Chu HY, et al. Connective tissue growth factor: from molecular understandings to drug discovery[J]. Front Cell Dev Biol, 2020, 8: 593269. DOI: 10.3389/fcell.2020.593269.
|
[35] |
Chen S, Rong M, Platteau A, et al. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 300(3): L330-L340. DOI: 10.1152/ajplung.00270.2010.
|
[36] |
Wu S, Platteau A, Chen S, et al. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development[J]. Am J Respir Cell Mol Biol, 2010, 42(5): 552-563. DOI: 10.1165/rcmb.2009-0068OC.
|
[37] |
Wang X, Cui H, Wu S. CTGF: a potential therapeutic target for bronchopulmonary dysplasia[J]. Eur J Pharmacol, 2019, 860: 172588. DOI: 10.1016/j.ejphar.2019.172588.
|
[38] |
Rong M, Chen S, Zambrano R, et al. Inhibition of β-catenin signaling protects against CTGF-induced alveolar and vascular pathology in neonatal mouse lung[J]. Pediatr Res, 2016, 80(1): 136-144. DOI: 10.1038/pr.2016.52.
|
[39] |
Chen X, Zhao C, Zhang C, et al. Vagal-α7nAChR signaling promotes lung stem cells regeneration via fibroblast growth factor 10 during lung injury repair[J]. Stem Cell Res Ther, 2020, 11(1): 230. DOI: 10.1186/s13287-020-01757-w.
|
[40] |
Gupte VV, Ramasamy SK, Reddy R, et al. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice[J]. Am J Respir Crit Care Med, 2009, 180(5): 424-436. DOI: 10.1164/rccm.200811-1794OC.
|
[41] |
Acosta JM, Thebaud B, Castillo C, et al. Novel mechanisms in murine nitrofen-induced pulmonary hypoplasia: FGF-10 rescue in culture[J]. Am J Physiol Lung Cell Mol Physiol, 2001, 281(1): 250-257. DOI: 10.1152/ajplung.2001.281.1.L250.
|
[42] |
Chao CM, Yahya F, Moiseenko A, et al. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia[J]. J Pathol, 2017, 241(1): 91-103. DOI: 10.1002/path.4834.
|
[43] |
Mohamed WA, Aseeri MA. Cord blood fibroblast growth factor-10 as a possible predictor of bronchopulmonary dysplasia in preterm infants[J]. J Neonatal Perinatal Med, 2014, 7(2): 101-105. DOI: 10.3233/NPM-1476613.
|
[44] |
Xing Y, Fu J, Yang H, et al. MicroRNA expression profiles and target prediction in neonatal Wistar rat lungs during the development of bronchopulmonary dysplasia[J]. Int J Mol Med, 2015, 36(5): 1253-1263. DOI: 10.3892/ijmm.2015.2347.
|
[45] |
|
[46] |
Gong X, Qiu J, Qiu G,et al. Adrenomedullin regulated by miRNA-574-3p protects premature infants with bronchopulmonary dysplasia[J]. Biosci Rep, 2020, 40(5): BSR20191879. DOI: 10.1042/BSR20191879.
|
[47] |
Brock M, Samillan VJ, Trenkmann M,et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension[J]. Eur Heart J, 2014, 35(45): 3203-3211. DOI: 10.1093/eurheartj/ehs060.
|
[48] |
Syed M, Das P, Pawar A, et al. Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs[J]. Nat Commun, 2017, 8(1): 1173. DOI: 10.1038/s41467-017-01349-y.
|
[49] |
Dong Y, Zhang X. Integrative analysis of lncRNAs, miRNAs, and mRNAs-associated ceRNA network in a neonatal mouse model of bronchopulmonary dysplasia[J]. J Matern Fetal Neonatal Med, 2020, 34(19): 3234-3245. DOI: 10.1080/14767058.2020.1815700.
|
[50] |
Yuan, HS, Xiong, DQ, Huang, F, et al. MicroRNA-421 inhibition alleviates bronchopulmonary dysplasia in a mouse model via targeting Fgf10[J]. J Cell Biochem, 2019, 120(10): 16876-16887. DOI; 10.1002/jcb.28945.
|
[51] |
Mathew R. Signaling pathways involved in the development of bronchopulmonary dysplasia and pulmonary hypertension[J]. Children (Basel), 2020, 7(8): 100. DOI: 10.3390/children7080100.
|
[52] |
|
[53] |
Gosens R, Mutawe M, Martin S, et al. Caveolae and caveolins in the respiratory system[J]. Curr Mol Med, 2008, 8(8): 741-753. DOI: 10.2174/156652408786733720.
|
[54] |
Kunzmann S, Collins JJ, Yang Y, et al. Antenatal inflammation reduces expression of caveolin-1 and influences multiple signaling pathways in preterm fetal lungs[J]. Am J Respir Cell Mol Biol, 2011, 45(5): 969-976. DOI: 10.1165/rcmb.2010-0519OC.
|
[55] |
Huang J, Wolk JH, Gewitz MH, et al. Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension[J]. Exp Lung Res, 2010, 36(1): 57-66. DOI: 10.3109/01902140903104793.
|
[56] |
Mathew R, Huang J, Katta US, et al. Immunosuppressant-induced endothelial damage and pulmonary arterial hypertension[J]. J Pediatr Hematol Oncol, 2011, 33(1): 55-58. DOI: 10.1097/MPH.0b013e3181ec0ede.
|