[1] |
Principi N, Di Pietro GM, Esposito S. Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies [J]. J Transl Med, 2018, 16(1): 36. DOI: 10.1186/s12967-018-1417-7.
|
[2] |
Holzfurtner L, Shahzad T, Dong Y, et al. When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia [J]. Mol Cell Pediatr, 2022, 9(1): 7. DOI: 10.1186/s40348-022-00137-z.
|
[3] |
Wang SH, Tsao PN. Phenotypes of bronchopulmonary dysplasia [J]. Int J Mol Sci, 2020, 21(17): 6112. DOI: 10.3390/ijms21176112.
|
[4] |
Stoecklin B, Simpson SJ, Pillow JJ. Bronchopulmonary dysplasia: rationale for a pathophysiological rather than treatment based approach to diagnosis [J]. Paediatr Respir Rev, 2019, 32: 91-97. DOI: 10.1016/j.prrv.2018.12.002.
|
[5] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis [J]. BMC Bioinformatics, 2008, 9: 559. DOI: 10.1186/1471-2105-9-559.
|
[6] |
Hao ML, Zuo XQ, Qiu Y, et al. WGCNA identification of genes and pathways involved in the pathogenesis of postmenopausal osteoporosis [J]. Int J Gen Med, 2021, 14: 8341-8353. DOI: 10.2147/IJGM.S336310.
|
[7] |
Ren ZH, Shang GP, Wu K, et al. WGCNA co-expression network analysis reveals ILF3-AS1 functions as a CeRNA to regulate PTBP1 expression by sponging miR-29a in gastric cancer [J]. Front Genet, 2020, 11: 39. DOI: 10.3389/fgene.2020.00039.
|
[8] |
Hasankhani A, Bahrami A, Sheybani N, et al. Differential co-expression network analysis reveals key hub-high traffic genes as potential rherapeutic targets for COVID-19 pandemic [J]. Front Immunol, 2021, 12: 789317. DOI: 10.3389/fimmu.2021.789317.
|
[9] |
Sun C, Zhu B, Zhu S, et al. Risk factors analysis of bone mineral density based on Lasso and quantile regression in America during 2015-2018 [J]. Int J Environ Res Public Health, 2021, 19(1): 355. DOI: 10.3390/ijerph19010355.
|
[10] |
|
[11] |
Mullah M, Hanley JA, Benedetti A. LASSO type penalized spline regression for binary data [J]. BMC Med Res Methodol, 2021, 21(1): 83. DOI: 10.1186/s12874-021-01234-9.
|
[12] |
Weinhold L, Schmid M, Mitchell R, et al. A random forest approach for bounded outcome variables [J]. J Comput Graph Stat, 2020, 29(3): 639-658. DOI: 10.1080/10618600.2019.1705310.
|
[13] |
Deng X, Bao Z, Yang X, et al. Molecular mechanisms of cell death in bronchopulmonary dysplasia [J]. Apoptosis, 2023, 28(1-2): 39-54. DOI: 10.1007/s10495-022-01791-4.
|
[14] |
Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia [J]. BMJ, 2021, 375: n1974. DOI: 10.1136/bmj.n1974.
|
[15] |
Carraro S, Giordano G, Pirillo P, et al. Airway metabolic anomalies in adolescents with bronchopulmonary dysplasia: new insights from the metabolomic approach [J]. J Pediatr, 2015, 166(2): 234-239.e1. DOI: 10.1016/j.jpeds.2014.08.049.
|
[16] |
Mowitz ME, Gao W, Sipsma H, et al. Long-term burden of respiratory complications associated with extreme prematurity: an analysis of US Medicaid claims [J]. Pediatr Neonatol, 2022, 63(5): 503-511. DOI: 10.1016/j.pedneo.2022.05.007.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
Zhang H, Xu P, Song Y. Machine-learning-based m5C score for the prognosis diagnosis of osteosarcoma [J]. J Oncol, 2021, 2021: 1629318. DOI: 10.1155/2021/1629318.
|
[21] |
Mao Y, Hu Z, Xu X, et al. Identification of a prognostic model based on costimulatory molecule-related subtypes and characterization of tumor microenvironment infiltration in acute myeloid leukemia[J]. Front Genet, 2022, 13:973319. DOI: 10.3389/fgene.2022.973319.
|
[22] |
Li M, Chen H, Yin P, et al. Identification and clinical validation of key extracellular proteins as the potential biomarkers in relapsing-remitting multiple sclerosis [J]. Front Immunol, 2021, 12: 753929. DOI: 10.3389/fimmu.2021.753929.
|
[23] |
Zhang B, Hu X, Li Y, et al. Identification of methylation markers for diagnosis of autism spectrum disorder [J]. Metab Brain Dis, 2022, 37(1): 219-228. DOI: 10.1007/s11011-021-00805-5.
|
[24] |
Zhang X, Zhang S, Yan X, et al. m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of periodontitis [J]. J Cell Mol Med, 2021, 25(7): 3634-3645. DOI: 10.1111/jcmm.16469.
|
[25] |
Gao J, Lu F, Yan J, et al. The role of radiotherapy-related autophagy genes in the prognosis and immune infiltration in lung adenocarcinoma [J]. Front Immunol, 2022, 13: 992626. DOI: 10.3389/fimmu.2022.992626.
|
[26] |
Yang C, Han Z, Zhan W, et al. Predictive investigation of idiopathic pulmonary fibrosis subtypes based on cellular senescence-related genes for disease treatment and management [J]. Front Genet, 2023, 14: 1157258. DOI: 10.3389/fgene.2023.1157258.
|
[27] |
Li Z, Xiao Y, Xu L, et al. Mining the key genes for ventilator-induced lung injury using co-expression network analysis [J]. Biosci Rep, 2021, 41(3): BSR20203235. DOI: 10.1042/BSR20203235.
|
[28] |
Zhang Y, Kong X, Zhang J, et al. Functional analysis of bronchopulmonary dysplasia-related neuropeptides in preterm infants and miRNA-based diagnostic model construction [J]. Comput Math Methods Med, 2022, 2022: 5682599. DOI: 10.1155/2022/5682599.
|
[29] |
Cai Y, Ma F, Qu L, et al. Weighted gene co-expression network analysis of key biomarkers associated with bronchopulmonary dysplasia [J]. Front Genet, 2020, 11: 539292. DOI: 10.3389/fgene.2020.539292.
|
[30] |
Kearsey J, Petit S, De Oliveira C, et al. A novel four transmembrane spanning protein, CLP24. A hypoxically regulated cell junction protein [J]. Eur J Biochem, 2004, 271(13): 2584-2592. DOI: 10.1111/j.1432-1033.2004.04186.x.
|
[31] |
Saharinen P, Helotera H, Miettinen J, et al. Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development [J]. Genes Dev, 2010, 24(9): 875-880. DOI: 10.1101/gad.565010.
|
[32] |
Secker GA, Harvey NL. VEGFR signaling during lymphatic vascular development: from progenitor cells to functional vessels [J]. Dev Dyn, 2015, 244(3): 323-331. DOI: 10.1002/dvdy.24227.
|
[33] |
Hülskötter K, Lühder F, Leitzen E, et al. CD28-signaling can be partially compensated in CD28-knockout mice but is essential for virus elimination in a murine model of multiple sclerosis [J]. Front Immunol, 2023, 14: 1105432. DOI: 10.3389/fimmu.2023.1105432.
|
[34] |
Kumar VHS, Wang H, Nielsen L. Adaptive immune responses are altered in adult mice following neonatal hyperoxia [J]. Physiol Rep, 2018, 6(2): e13577. DOI: 10.14814/phy2.13577.
|
[35] |
Revhaug C, Bik-Multanowski M, Zasada M, et al. Immune system regulation affected by a murine experimental model of bronchopulmonary dysplasia: genomic and epigenetic findings [J]. Neonatology, 2019, 116(3): 269-277. DOI: 10.1159/000501461.
|
[36] |
Riley JL, Mao M, Kobayashi S, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors [J]. Proc Natl Acad Sci U S A, 2002, 99(18): 11790-11795. DOI: 10.1073/pnas.162359999.
|
[37] |
Xiao Z, Mayer AT, Nobashi TW, et al. ICOS is an indicator of T-cell-mediated response to cancer immunotherapy [J]. Cancer Res, 2020, 80(14): 3023-3032. DOI: 10.1158/0008-5472.CAN-19-3265.
|
[38] |
Cai Y, Ma F, Qu L, et al. Weighted gene co-expression network analysis of key biomarkers associated with bronchopulmonary dysplasia [J]. Front Genet, 2020, 11: 539292. DOI: 10.3389/fgene.2020.539292.
|
[39] |
Hrusch CL, Manns ST, Bryazka D, et al. ICOS protects against mortality from acute lung injury through activation of IL-5+ ILC2s [J]. Mucosal Immunol, 2018, 11(1): 61-70. DOI: 10.1038/mi.2017.42.
|
[40] |
Chang H, Dong T, Ma X, et al. Spondin 1 promotes metastatic progression through Fak and Src dependent pathway in human osteosarcoma [J]. Biochem Biophys Res Commun, 2015, 464(1): 45-50. DOI: 10.1016/j.bbrc.2015.05.092.
|
[41] |
Tamjidifar R, Akbari M, Tarzi S, et al. Prognostic and diagnostic values of miR-506 and SPON 1 in colorectal cancer with clinicopathological considerations [J]. J Gastrointest Cancer, 2021, 52(1): 125-129. DOI: 10.1007/s12029-019-00356-0.
|
[42] |
Li H, Li J, Hu Y, et al. FOXO3 regulates Smad3 and Smad7 through SPON1 circular RNA to inhibit idiopathic pulmonary fibrosis [J]. Int J Biol Sci, 2023, 19(10): 3042-3056. DOI: 10.7150/ijbs.80140.
|
[43] |
Heindl K, Martinez J. Nol9 is a novel polynucleotide 5′-kinase involved in ribosomal RNA processing [J]. EMBO J, 2010, 29(24): 4161-4171. DOI: 10.1038/emboj.2010.275.
|
[44] |
Gordon J, Pillon MC, Stanley RE. Nol9 is a spatial regulator for the human ITS2 pre-rRNA endonuclease-kinase complex [J]. J Mol Biol, 2019, 431(19): 3771-3786. DOI: 10.1016/j.jmb.2019.07.007.
|
[45] |
Hu JY, Wang Y, Tong XM, et al. When to consider logistic LASSO regression in multivariate analysis? [J]. Eur J Surg Oncol, 2021, 47(8): 2206. DOI: 10.1016/j.ejso.2021.04.011.
|
[46] |
Li M, Zhu W, Wang C, et al. Weighted gene co-expression network analysis to identify key modules and hub genes associated with paucigranulocytic asthma [J]. BMC Pulm Med, 2021, 21(1): 343. DOI: 10.1186/s12890-021-01711-3.
|
[47] |
Alderden J, Pepper GA, Wilson A, et al. Predicting pressure injury in critical care patients: a machine-learning model [J]. Am J Crit Care, 2018, 27(6): 461-468. DOI: 10.4037/ajcc2018525.
|