Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (03): 368 -372. doi: 10.3877/cma.j.issn.1673-5250.2021.03.020

Review

Research progresses of hyperoxia-induced injury of pulmonary vascular endothelial cells in bronchopulmonary dysplasia

Sisi Wang, Jinlin Wu()   

  • Received:2020-06-21 Revised:2021-05-14 Published:2021-06-01
  • Corresponding author: Jinlin Wu
  • Supported by:
    Applied Basic Research Project of Science & Technology Department of Sichuan Province(2021YJ0211); Popularization Application Project of Health Commission of Sichuan Province(20PJ070)

Bronchopulmonary dysplasia (BPD) is common in preterm infants who need oxygen therapy, and pulmonary vascular endothelial cells (PVEC) are the main target cells of hyperoxia stress response.This review focuses on the research progresses of physiological function, metabolic process and signal molecule changes of PVEC induced by hyperoxia in occurrence and development of BPD.

[1]
Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia[J]. N Engl J Med, 1967, 276(7): 357-368. DOI: 10.1056/NEJM196702162760701.
[2]
Merritt TA, Deming DD, Boynton BR. The ′new′ bronchopulmonary dysplasia: challenges and commentary[J]. Semin Fetal Neonatal Med, 2009, 14(6): 345-357. DOI: 10.1016/j.siny.2009.08.009.
[3]
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. DOI: 10.1001/jama.2015.10244.
[4]
Kolls JK. Commentary: understanding the impact of infection, inflammation and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2017, 4: 24. DOI: 10.3389/fmed.2017.00024.
[5]
Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2015, 2: 90. DOI: 10.3389/fmed.2015.00090.
[6]
Li T, Zha L, Luo H, et al. Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension[J]. Aging Dis, 2019, 10(4): 731-745. DOI: 10.14336/AD.2018.1001.
[7]
Nakanishi H, Morikawa S, Kitahara S, et al. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice[J]. Med Mol Morphol, 2018, 51(3): 166-175. DOI: 10.1007/s00795-018-0182-2.
[8]
Li C, Fu J, Liu H, et al. Hyperoxia arrests pulmonary development in newborn rats via disruption of endothelial tight junctions and downregulation of Cx40[J]. Mol Med Rep, 2014, 10(1): 61-67. DOI: 10.3892/mmr.2014.2192.
[9]
李芳芳,魏学功,王霞,等. 高氧暴露对新生SD大鼠肺泡内白细胞介素-8及肿瘤坏死因子-α含量的影响[J/CD]. 中华妇幼临床医学杂志(电子版), 2016, 12(2):179-183.DOI: 10.3877/cma.j.issn.1673-5250.2016.02.009.
[10]
赵妍,孙耕耘,尤青海. TNF-α对肺微血管内皮细胞ERM蛋白表达的研究[J]. 中华急诊医学杂志2015, 24(6):612-616. DOI: 10.3760/cma.j.issn.1671-0282.2015.06.009.
[11]
Mong PY, Petrulio C, Kaufman HL, et al. Activation of Rho kinase by TNF-alpha is required for JNK activation in human pulmonary microvascular endothelial cells[J]. J Immunol, 2008, 180(1): 550-558. DOI: 10.4049/jimmunol.180.1.550.
[12]
Ghelfi E, Karaaslan C, Berkelhamer S, et al. Fatty acid-binding proteins and peribronchial angiogenesis in bronchopulmonary dysplasia[J]. Am J Respir Cell Mol Biol, 2011, 45(3): 550-556. DOI: 10.1165/rcmb.2010-0376OC.
[13]
Yao H, Gong J, Peterson AL, et al. Fatty acid oxidation protects against hyperoxia-induced endothelial cell apoptosis and lung injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 60(6): 667-677. DOI: 10.1165/rcmb.2018-0335OC.
[14]
Dennery PA, Carr J, Peterson A, et al. The role of mitochondrial fatty acid use in neonatal lung injury and repair[J]. Trans Am Clin Climatol Assoc, 2018, 129: 195-201.
[15]
Henique C, Mansouri A, Fumey G, et al. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis[J]. J Biol Chem, 2010, 285(47): 36818-36827. DOI: 10.1074/jbc.M110.170431.
[16]
van Mastrigt E, Zweekhorst S, Bol B, et al. Ceramides in tracheal aspirates of preterm infants: marker for bronchopulmonary dysplasia[J]. PLoS One, 2018, 13(1): e0185969. DOI: 10.1371/journal.pone.0185969.
[17]
Audi SH, Jacobs ER, Zhao M, et al. In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin[J]. Nucl Med Biol, 2015, 42(1): 46-52. DOI: 10.1016/j.nucmedbio.2014.08.010.
[18]
Datta A, Kim GA, Taylor JM, et al. Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(4): L369-L377. DOI: 10.1152/ajplung.00176.2014.
[19]
Schönauer R, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin-new perspectives of a potent peptide hormone[J]. J Pept Sci, 2017, 23(7-8): 472-485. DOI: 10.1002/psc.2953.
[20]
Fernandez-Sauze S, Delfino C, Mabrouk K, et al. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors[J]. Int J Cancer, 2004, 108(6): 797-804. DOI: 10.1002/ijc.11663.
[21]
Menon RT, Shrestha AK, Shivanna B. Hyperoxia exposure disrupts adrenomedullin signaling in newborn mice: implications for lung development in premature infants[J]. Biochem Biophys Res Commun, 2017, 487(3): 666-671. DOI: 10.1016/j.bbrc.2017.04.112.
[22]
刘丽平,庞璐璐,齐建光,等. 肾上腺髓质素对高肺血流大鼠肺组织氧化应激的调节作用[J]. 中国病理生理杂志2017, 33(4):735-739. DOI: 10.3969/j.issn.1000-4718.2017.04.026.
[23]
Zhang S, Patel A, Moorthy B, et al. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells[J]. Biochem Biophys Res Commun, 2015, 464(4): 1048-1053. DOI: 10.1016/j.bbrc.2015.07.067.
[24]
Chao CM, van den Bruck R, Lork S, et al. Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures associated with NOS3 and STAT3 in a mouse model[J]. Clin Epigenetics, 2018, 10: 37. DOI: 10.1186/s13148-018-0469-0.
[25]
de Wijs-Meijler D, Duncker DJ, Danser A, et al. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease[J]. Physiol Rep, 2018, 6(20): e13889. DOI: 10.14814/phy2.13889.
[26]
Guo Q, Jin J, Yuan JX, et al. VEGF, Bcl-2 and Bad regulated by angiopoietin-1 in oleic acid induced acute lung injury[J]. Biochem Biophys Res Commun, 2011, 413(4): 630-636. DOI: 10.1016/j.bbrc.2011.09.015.
[27]
Meller S, Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships[J]. Exp Lung Res, 2012, 38(4): 192-203. DOI: 10.3109/01902148.2012.663454.
[28]
高原,刘花兰,包云光,等. 支气管肺发育不良早产儿肝细胞生长因子、血管内皮生长因子水平变化及其相关性[J/CD]. 中华妇幼临床医学杂志(电子版), 2015, 11(3):342-346. DOI: 10.3877/cma.j.issn.1673-5250.2015.03.012.
[29]
王玲,封志纯,吕回. 血管内皮生长因子和血管生成素-1在高氧诱导新生鼠支气管肺发育不良的表达及其对肺发育的影响[J]. 实用医学杂志2014, 30(4):525-527,528. DOI: 10.3969/j.issn.1006-5725.2014.04.008.
[30]
Chetty A, Bennett M, Dang L, et al. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia[J]. Am J Respir Cell Mol Biol, 2015, 52(3): 295-303. DOI: 10.1165/rcmb.2013-0229OC.
[31]
Zhang X, Lu A, Li Z, et al. Exosomes secreted by endothelial progenitor cells improve the bioactivity of pulmonary microvascular endothelial cells exposed to hyperoxia in vitro[J]. Ann Transl Med, 2019, 7(12): 254. DOI: 10.21037/atm.2019.05.10.
[32]
Chen Z, Yue SX, Zhou G, et al. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation[J]. J Bone Miner Res, 2015, 30(5): 765-774. DOI: 10.1002/jbmr.2409.
[33]
Menon RT, Shrestha AK, Barrios R, et al. Hyperoxia disrupts extracellular signal-regulated kinases 1/2-induced angiogenesis in the developing lungs[J]. Int J Mol Sci, 2018, 19(5): 1525. DOI: 10.3390/ijms19051525.
[34]
Yan B, Zhong W, He QM, et al. Expression of transforming growth factor-β1 in neonatal rats with hyperoxia-induced bronchopulmonary dysplasia and its relationship with lung development[J]. Genet Mol Res, 2016, 15(2): gmr.15028064. DOI: 10.4238/gmr.15028064.
[35]
Kunzmann S, Ottensmeier B, Speer CP, et al. Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells[J]. PLoS One, 2018, 13(7): e0200661. DOI: 10.1371/journal.pone.0200661.
[36]
Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF-beta type Ⅰ receptors[J]. EMBO J, 2002, 21(7): 1743-1753. DOI: 10.1093/emboj/21.7.1743.
[37]
Jin M, Lee J, Lee KY, et al. Alteration of TGF-β-ALK-Smad signaling in hyperoxia-induced bronchopulmonary dysplasia model of newborn rats[J]. Exp Lung Res, 2016, 42(7): 354-364. DOI: 10.1080/01902148.2016.1226448.
[38]
Sureshbabu A, Syed MA, Boddupalli CS, et al. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung[J]. Respir Res, 2015, 16: 4. DOI: 10.1186/s12931-014-0162-6.
[39]
Charpentier MS, Taylor JM, Conlon FL. The CASZ1/Egfl7 transcriptional pathway is required for RhoA expression in vascular endothelial cells[J]. Small GTPases, 2013, 4(4): 231-235. DOI: 10.4161/sgtp.26849.
[40]
崔换金,黄为民,何嘉裕. 高氧暴露新生大鼠肺组织转录因子CASZ1的表达及其与肺微血管发育的关系[J]. 中华儿科杂志2016, 54(1):37-42. DOI: 10.3760/cma.j.issn.0578-1310.2016.01.009.
[41]
王利,张凯,朱建幸,等. 高氧暴露抑制新生小鼠肺血管内皮细胞Sox17的表达[J]. 中华围产医学杂志2015, 18(6):462-466. DOI: 10.3760/cma.j.issn.1007-9408.2015.06.015.
[42]
崔换金,何嘉裕,吴伟彬,等. 前B细胞集落增强因子在支气管肺发育不良新生大鼠肺组织中的表达及意义[J]. 广东医学2016, 37(4):499-503.
[43]
李秋平,马兴娜,马倩倩,等. 长期高氧暴露对新生小鼠肺微血管发育及Ephrin-B2表达的影响[J]. 中华围产医学杂志2016, 19(7):516-521. DOI: 10.3760/cma.j.issn.1007-9408.2016.07.008.
[1] Yunjie Nong, Xiaogui Huang, Yulan Huang, Hengrong Nong. Clinical value of ultrasound in diagnosis of multiple microbial pulmonary infections[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(09): 872-876.
[2] Ziwei Lei, Ping Ling, Zong Shen, Chenru Wei, Banghui Zhu, Guosheng Wu, Yu Sun. Research progress on the construction and application of disease models of lung injury with organoidbased approach[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(06): 531-535.
[3] of Organ Transplantation of Chinese Medical Association Branch. Chinese guideline for clinical diagnosis and treatment of airway complications in lung transplant recipients (2024 edition)[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(05): 266-274.
[4] Ying Huang, Xuan Li, Mengyang Liu, Guilin Peng, Xin Xu, Bing Wei, Chao Yang. Targeted combination therapy for advanced lung adenocarcinoma with double mutation of KRAS and BRAF genes after double lung transplantation:a case report[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(05): 298-301.
[5] Wei Xu, Min Liu, Zhanghua Zhong, Yanli Pei, Lei Rong. Diagnostic value of endobronchial ultrasound-guided transbronchial needle aspiration combine X-ray guided tranbronchial lung biopsy in hilar and mediastinal diseases[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 680-684.
[6] Qile Shen, Qinhua Zhao, Sugang Gong, Jinming Liu, Lan Wang, Hongling Qiu. Relationship between serum CC16 protein expression, lung function and emphysema phenotype in stable COPD patients[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 690-695.
[7] Minlong Zhang, Cuiping Yang, Bo Wang, Yunjie Cui, Faguang Jin. miR-200b-3p suppressed the edema in seawater aspiration-induced ALI via inhibition the expression of HIF-1α[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 696-700.
[8] Yanli Yuan, Zhuojun Qu, Huihui Cui, Jing Wang, Beibei Gao, Yuan3 Pan. Risk scoring system and prognosis analysis of postoperative delirium in patients with primary lung cancer[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 701-706.
[9] Fahong Jing, Lina Li, Ting Gao, Yanmei Gao, Nan Yang, Zhuo Li, Yudong Mu. Expression and clinical significance of serum SAP and MMPs in lung cancer treated by stereotactic radiotherapy[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 707-713.
[10] Hui Yang, Lijuan Guo, Xiaodan Feng, Jing LI, Chengmo Huang, Xingrui Cai, Yingjiao Qin, Yuanli Wang. Expression characteristics and prediction analysis of platinum-resistant mi RNA in non-small cell lung cancer[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 719-724.
[11] Miao Lai, Xin Jing, Guizhen Li, Yi Li. Clinicopathological and prognostic significance of EGFR mutant subtypes in patients with non-small cell lung cancer[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 731-737.
[12] Shasha Yang, Maowei Zhang, Yitian Sun, Yanan Liu, Juan Wei, Jian Wei, Bi Chen. Clinical analysis of interstitial lung disease associated with connective tissue disease complicated with small airway dysfunction[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 738-743.
[13] Liu Yang, Jia Chen, Yajuan Sun, Jiao Chen, Mingchao Tan, Mingfu Gong. Chest CT and clinical features of antineutrophil cytoplasmic antibody-associated vasculitis[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 744-749.
[14] Lisi Liang, Jie Li, Shuai He, Yanjun Lai, Ming Liu, Lin Zhang. Significance of MMP-9, MMP-2, TLR4, HE4 in early diagnosis of non-small cell lung cancer[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 756-761.
[15] Yuanyuan Yuan, Leqi Yue, Huaxing Zhang, Yan Wu, Quanhai Li. Advances in the distribution in lung tissue and therapeutic mechanisms of mesenchymal stem cells in respiratory system diseases models[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(06): 374-381.
Viewed
Full text


Abstract