[1] |
Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia[J]. N Engl J Med, 1967, 276(7): 357-368. DOI: 10.1056/NEJM196702162760701.
|
[2] |
Merritt TA, Deming DD, Boynton BR. The ′new′ bronchopulmonary dysplasia: challenges and commentary[J]. Semin Fetal Neonatal Med, 2009, 14(6): 345-357. DOI: 10.1016/j.siny.2009.08.009.
|
[3] |
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. DOI: 10.1001/jama.2015.10244.
|
[4] |
Kolls JK. Commentary: understanding the impact of infection, inflammation and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2017, 4: 24. DOI: 10.3389/fmed.2017.00024.
|
[5] |
Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2015, 2: 90. DOI: 10.3389/fmed.2015.00090.
|
[6] |
Li T, Zha L, Luo H, et al. Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension[J]. Aging Dis, 2019, 10(4): 731-745. DOI: 10.14336/AD.2018.1001.
|
[7] |
Nakanishi H, Morikawa S, Kitahara S, et al. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice[J]. Med Mol Morphol, 2018, 51(3): 166-175. DOI: 10.1007/s00795-018-0182-2.
|
[8] |
Li C, Fu J, Liu H, et al. Hyperoxia arrests pulmonary development in newborn rats via disruption of endothelial tight junctions and downregulation of Cx40[J]. Mol Med Rep, 2014, 10(1): 61-67. DOI: 10.3892/mmr.2014.2192.
|
[9] |
|
[10] |
|
[11] |
Mong PY, Petrulio C, Kaufman HL, et al. Activation of Rho kinase by TNF-alpha is required for JNK activation in human pulmonary microvascular endothelial cells[J]. J Immunol, 2008, 180(1): 550-558. DOI: 10.4049/jimmunol.180.1.550.
|
[12] |
Ghelfi E, Karaaslan C, Berkelhamer S, et al. Fatty acid-binding proteins and peribronchial angiogenesis in bronchopulmonary dysplasia[J]. Am J Respir Cell Mol Biol, 2011, 45(3): 550-556. DOI: 10.1165/rcmb.2010-0376OC.
|
[13] |
Yao H, Gong J, Peterson AL, et al. Fatty acid oxidation protects against hyperoxia-induced endothelial cell apoptosis and lung injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 60(6): 667-677. DOI: 10.1165/rcmb.2018-0335OC.
|
[14] |
Dennery PA, Carr J, Peterson A, et al. The role of mitochondrial fatty acid use in neonatal lung injury and repair[J]. Trans Am Clin Climatol Assoc, 2018, 129: 195-201.
|
[15] |
Henique C, Mansouri A, Fumey G, et al. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis[J]. J Biol Chem, 2010, 285(47): 36818-36827. DOI: 10.1074/jbc.M110.170431.
|
[16] |
van Mastrigt E, Zweekhorst S, Bol B, et al. Ceramides in tracheal aspirates of preterm infants: marker for bronchopulmonary dysplasia[J]. PLoS One, 2018, 13(1): e0185969. DOI: 10.1371/journal.pone.0185969.
|
[17] |
Audi SH, Jacobs ER, Zhao M, et al. In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin[J]. Nucl Med Biol, 2015, 42(1): 46-52. DOI: 10.1016/j.nucmedbio.2014.08.010.
|
[18] |
Datta A, Kim GA, Taylor JM, et al. Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(4): L369-L377. DOI: 10.1152/ajplung.00176.2014.
|
[19] |
Schönauer R, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin-new perspectives of a potent peptide hormone[J]. J Pept Sci, 2017, 23(7-8): 472-485. DOI: 10.1002/psc.2953.
|
[20] |
Fernandez-Sauze S, Delfino C, Mabrouk K, et al. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors[J]. Int J Cancer, 2004, 108(6): 797-804. DOI: 10.1002/ijc.11663.
|
[21] |
Menon RT, Shrestha AK, Shivanna B. Hyperoxia exposure disrupts adrenomedullin signaling in newborn mice: implications for lung development in premature infants[J]. Biochem Biophys Res Commun, 2017, 487(3): 666-671. DOI: 10.1016/j.bbrc.2017.04.112.
|
[22] |
|
[23] |
Zhang S, Patel A, Moorthy B, et al. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells[J]. Biochem Biophys Res Commun, 2015, 464(4): 1048-1053. DOI: 10.1016/j.bbrc.2015.07.067.
|
[24] |
Chao CM, van den Bruck R, Lork S, et al. Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures associated with NOS3 and STAT3 in a mouse model[J]. Clin Epigenetics, 2018, 10: 37. DOI: 10.1186/s13148-018-0469-0.
|
[25] |
de Wijs-Meijler D, Duncker DJ, Danser A, et al. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease[J]. Physiol Rep, 2018, 6(20): e13889. DOI: 10.14814/phy2.13889.
|
[26] |
Guo Q, Jin J, Yuan JX, et al. VEGF, Bcl-2 and Bad regulated by angiopoietin-1 in oleic acid induced acute lung injury[J]. Biochem Biophys Res Commun, 2011, 413(4): 630-636. DOI: 10.1016/j.bbrc.2011.09.015.
|
[27] |
Meller S, Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships[J]. Exp Lung Res, 2012, 38(4): 192-203. DOI: 10.3109/01902148.2012.663454.
|
[28] |
|
[29] |
|
[30] |
Chetty A, Bennett M, Dang L, et al. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia[J]. Am J Respir Cell Mol Biol, 2015, 52(3): 295-303. DOI: 10.1165/rcmb.2013-0229OC.
|
[31] |
Zhang X, Lu A, Li Z, et al. Exosomes secreted by endothelial progenitor cells improve the bioactivity of pulmonary microvascular endothelial cells exposed to hyperoxia in vitro[J]. Ann Transl Med, 2019, 7(12): 254. DOI: 10.21037/atm.2019.05.10.
|
[32] |
Chen Z, Yue SX, Zhou G, et al. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation[J]. J Bone Miner Res, 2015, 30(5): 765-774. DOI: 10.1002/jbmr.2409.
|
[33] |
Menon RT, Shrestha AK, Barrios R, et al. Hyperoxia disrupts extracellular signal-regulated kinases 1/2-induced angiogenesis in the developing lungs[J]. Int J Mol Sci, 2018, 19(5): 1525. DOI: 10.3390/ijms19051525.
|
[34] |
Yan B, Zhong W, He QM, et al. Expression of transforming growth factor-β1 in neonatal rats with hyperoxia-induced bronchopulmonary dysplasia and its relationship with lung development[J]. Genet Mol Res, 2016, 15(2): gmr.15028064. DOI: 10.4238/gmr.15028064.
|
[35] |
Kunzmann S, Ottensmeier B, Speer CP, et al. Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells[J]. PLoS One, 2018, 13(7): e0200661. DOI: 10.1371/journal.pone.0200661.
|
[36] |
Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF-beta type Ⅰ receptors[J]. EMBO J, 2002, 21(7): 1743-1753. DOI: 10.1093/emboj/21.7.1743.
|
[37] |
Jin M, Lee J, Lee KY, et al. Alteration of TGF-β-ALK-Smad signaling in hyperoxia-induced bronchopulmonary dysplasia model of newborn rats[J]. Exp Lung Res, 2016, 42(7): 354-364. DOI: 10.1080/01902148.2016.1226448.
|
[38] |
Sureshbabu A, Syed MA, Boddupalli CS, et al. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung[J]. Respir Res, 2015, 16: 4. DOI: 10.1186/s12931-014-0162-6.
|
[39] |
Charpentier MS, Taylor JM, Conlon FL. The CASZ1/Egfl7 transcriptional pathway is required for RhoA expression in vascular endothelial cells[J]. Small GTPases, 2013, 4(4): 231-235. DOI: 10.4161/sgtp.26849.
|
[40] |
|
[41] |
|
[42] |
崔换金,何嘉裕,吴伟彬,等. 前B细胞集落增强因子在支气管肺发育不良新生大鼠肺组织中的表达及意义[J]. 广东医学,2016, 37(4):499-503.
|
[43] |
|