Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (03): 368 -372. doi: 10.3877/cma.j.issn.1673-5250.2021.03.020

Review

Research progresses of hyperoxia-induced injury of pulmonary vascular endothelial cells in bronchopulmonary dysplasia

Sisi Wang, Jinlin Wu()   

  • Received:2020-06-21 Revised:2021-05-14 Published:2021-06-01
  • Corresponding author: Jinlin Wu
  • Supported by:
    Applied Basic Research Project of Science & Technology Department of Sichuan Province(2021YJ0211); Popularization Application Project of Health Commission of Sichuan Province(20PJ070)

Bronchopulmonary dysplasia (BPD) is common in preterm infants who need oxygen therapy, and pulmonary vascular endothelial cells (PVEC) are the main target cells of hyperoxia stress response.This review focuses on the research progresses of physiological function, metabolic process and signal molecule changes of PVEC induced by hyperoxia in occurrence and development of BPD.

[1]
Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia[J]. N Engl J Med, 1967, 276(7): 357-368. DOI: 10.1056/NEJM196702162760701.
[2]
Merritt TA, Deming DD, Boynton BR. The ′new′ bronchopulmonary dysplasia: challenges and commentary[J]. Semin Fetal Neonatal Med, 2009, 14(6): 345-357. DOI: 10.1016/j.siny.2009.08.009.
[3]
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. DOI: 10.1001/jama.2015.10244.
[4]
Kolls JK. Commentary: understanding the impact of infection, inflammation and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2017, 4: 24. DOI: 10.3389/fmed.2017.00024.
[5]
Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2015, 2: 90. DOI: 10.3389/fmed.2015.00090.
[6]
Li T, Zha L, Luo H, et al. Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension[J]. Aging Dis, 2019, 10(4): 731-745. DOI: 10.14336/AD.2018.1001.
[7]
Nakanishi H, Morikawa S, Kitahara S, et al. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice[J]. Med Mol Morphol, 2018, 51(3): 166-175. DOI: 10.1007/s00795-018-0182-2.
[8]
Li C, Fu J, Liu H, et al. Hyperoxia arrests pulmonary development in newborn rats via disruption of endothelial tight junctions and downregulation of Cx40[J]. Mol Med Rep, 2014, 10(1): 61-67. DOI: 10.3892/mmr.2014.2192.
[9]
李芳芳,魏学功,王霞,等. 高氧暴露对新生SD大鼠肺泡内白细胞介素-8及肿瘤坏死因子-α含量的影响[J/CD]. 中华妇幼临床医学杂志(电子版), 2016, 12(2):179-183.DOI: 10.3877/cma.j.issn.1673-5250.2016.02.009.
[10]
赵妍,孙耕耘,尤青海. TNF-α对肺微血管内皮细胞ERM蛋白表达的研究[J]. 中华急诊医学杂志2015, 24(6):612-616. DOI: 10.3760/cma.j.issn.1671-0282.2015.06.009.
[11]
Mong PY, Petrulio C, Kaufman HL, et al. Activation of Rho kinase by TNF-alpha is required for JNK activation in human pulmonary microvascular endothelial cells[J]. J Immunol, 2008, 180(1): 550-558. DOI: 10.4049/jimmunol.180.1.550.
[12]
Ghelfi E, Karaaslan C, Berkelhamer S, et al. Fatty acid-binding proteins and peribronchial angiogenesis in bronchopulmonary dysplasia[J]. Am J Respir Cell Mol Biol, 2011, 45(3): 550-556. DOI: 10.1165/rcmb.2010-0376OC.
[13]
Yao H, Gong J, Peterson AL, et al. Fatty acid oxidation protects against hyperoxia-induced endothelial cell apoptosis and lung injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 60(6): 667-677. DOI: 10.1165/rcmb.2018-0335OC.
[14]
Dennery PA, Carr J, Peterson A, et al. The role of mitochondrial fatty acid use in neonatal lung injury and repair[J]. Trans Am Clin Climatol Assoc, 2018, 129: 195-201.
[15]
Henique C, Mansouri A, Fumey G, et al. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis[J]. J Biol Chem, 2010, 285(47): 36818-36827. DOI: 10.1074/jbc.M110.170431.
[16]
van Mastrigt E, Zweekhorst S, Bol B, et al. Ceramides in tracheal aspirates of preterm infants: marker for bronchopulmonary dysplasia[J]. PLoS One, 2018, 13(1): e0185969. DOI: 10.1371/journal.pone.0185969.
[17]
Audi SH, Jacobs ER, Zhao M, et al. In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin[J]. Nucl Med Biol, 2015, 42(1): 46-52. DOI: 10.1016/j.nucmedbio.2014.08.010.
[18]
Datta A, Kim GA, Taylor JM, et al. Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(4): L369-L377. DOI: 10.1152/ajplung.00176.2014.
[19]
Schönauer R, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin-new perspectives of a potent peptide hormone[J]. J Pept Sci, 2017, 23(7-8): 472-485. DOI: 10.1002/psc.2953.
[20]
Fernandez-Sauze S, Delfino C, Mabrouk K, et al. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors[J]. Int J Cancer, 2004, 108(6): 797-804. DOI: 10.1002/ijc.11663.
[21]
Menon RT, Shrestha AK, Shivanna B. Hyperoxia exposure disrupts adrenomedullin signaling in newborn mice: implications for lung development in premature infants[J]. Biochem Biophys Res Commun, 2017, 487(3): 666-671. DOI: 10.1016/j.bbrc.2017.04.112.
[22]
刘丽平,庞璐璐,齐建光,等. 肾上腺髓质素对高肺血流大鼠肺组织氧化应激的调节作用[J]. 中国病理生理杂志2017, 33(4):735-739. DOI: 10.3969/j.issn.1000-4718.2017.04.026.
[23]
Zhang S, Patel A, Moorthy B, et al. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells[J]. Biochem Biophys Res Commun, 2015, 464(4): 1048-1053. DOI: 10.1016/j.bbrc.2015.07.067.
[24]
Chao CM, van den Bruck R, Lork S, et al. Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures associated with NOS3 and STAT3 in a mouse model[J]. Clin Epigenetics, 2018, 10: 37. DOI: 10.1186/s13148-018-0469-0.
[25]
de Wijs-Meijler D, Duncker DJ, Danser A, et al. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease[J]. Physiol Rep, 2018, 6(20): e13889. DOI: 10.14814/phy2.13889.
[26]
Guo Q, Jin J, Yuan JX, et al. VEGF, Bcl-2 and Bad regulated by angiopoietin-1 in oleic acid induced acute lung injury[J]. Biochem Biophys Res Commun, 2011, 413(4): 630-636. DOI: 10.1016/j.bbrc.2011.09.015.
[27]
Meller S, Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships[J]. Exp Lung Res, 2012, 38(4): 192-203. DOI: 10.3109/01902148.2012.663454.
[28]
高原,刘花兰,包云光,等. 支气管肺发育不良早产儿肝细胞生长因子、血管内皮生长因子水平变化及其相关性[J/CD]. 中华妇幼临床医学杂志(电子版), 2015, 11(3):342-346. DOI: 10.3877/cma.j.issn.1673-5250.2015.03.012.
[29]
王玲,封志纯,吕回. 血管内皮生长因子和血管生成素-1在高氧诱导新生鼠支气管肺发育不良的表达及其对肺发育的影响[J]. 实用医学杂志2014, 30(4):525-527,528. DOI: 10.3969/j.issn.1006-5725.2014.04.008.
[30]
Chetty A, Bennett M, Dang L, et al. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia[J]. Am J Respir Cell Mol Biol, 2015, 52(3): 295-303. DOI: 10.1165/rcmb.2013-0229OC.
[31]
Zhang X, Lu A, Li Z, et al. Exosomes secreted by endothelial progenitor cells improve the bioactivity of pulmonary microvascular endothelial cells exposed to hyperoxia in vitro[J]. Ann Transl Med, 2019, 7(12): 254. DOI: 10.21037/atm.2019.05.10.
[32]
Chen Z, Yue SX, Zhou G, et al. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation[J]. J Bone Miner Res, 2015, 30(5): 765-774. DOI: 10.1002/jbmr.2409.
[33]
Menon RT, Shrestha AK, Barrios R, et al. Hyperoxia disrupts extracellular signal-regulated kinases 1/2-induced angiogenesis in the developing lungs[J]. Int J Mol Sci, 2018, 19(5): 1525. DOI: 10.3390/ijms19051525.
[34]
Yan B, Zhong W, He QM, et al. Expression of transforming growth factor-β1 in neonatal rats with hyperoxia-induced bronchopulmonary dysplasia and its relationship with lung development[J]. Genet Mol Res, 2016, 15(2): gmr.15028064. DOI: 10.4238/gmr.15028064.
[35]
Kunzmann S, Ottensmeier B, Speer CP, et al. Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells[J]. PLoS One, 2018, 13(7): e0200661. DOI: 10.1371/journal.pone.0200661.
[36]
Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF-beta type Ⅰ receptors[J]. EMBO J, 2002, 21(7): 1743-1753. DOI: 10.1093/emboj/21.7.1743.
[37]
Jin M, Lee J, Lee KY, et al. Alteration of TGF-β-ALK-Smad signaling in hyperoxia-induced bronchopulmonary dysplasia model of newborn rats[J]. Exp Lung Res, 2016, 42(7): 354-364. DOI: 10.1080/01902148.2016.1226448.
[38]
Sureshbabu A, Syed MA, Boddupalli CS, et al. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung[J]. Respir Res, 2015, 16: 4. DOI: 10.1186/s12931-014-0162-6.
[39]
Charpentier MS, Taylor JM, Conlon FL. The CASZ1/Egfl7 transcriptional pathway is required for RhoA expression in vascular endothelial cells[J]. Small GTPases, 2013, 4(4): 231-235. DOI: 10.4161/sgtp.26849.
[40]
崔换金,黄为民,何嘉裕. 高氧暴露新生大鼠肺组织转录因子CASZ1的表达及其与肺微血管发育的关系[J]. 中华儿科杂志2016, 54(1):37-42. DOI: 10.3760/cma.j.issn.0578-1310.2016.01.009.
[41]
王利,张凯,朱建幸,等. 高氧暴露抑制新生小鼠肺血管内皮细胞Sox17的表达[J]. 中华围产医学杂志2015, 18(6):462-466. DOI: 10.3760/cma.j.issn.1007-9408.2015.06.015.
[42]
崔换金,何嘉裕,吴伟彬,等. 前B细胞集落增强因子在支气管肺发育不良新生大鼠肺组织中的表达及意义[J]. 广东医学2016, 37(4):499-503.
[43]
李秋平,马兴娜,马倩倩,等. 长期高氧暴露对新生小鼠肺微血管发育及Ephrin-B2表达的影响[J]. 中华围产医学杂志2016, 19(7):516-521. DOI: 10.3760/cma.j.issn.1007-9408.2016.07.008.
[1] Zhengyun Hu, Jianwei Shi, Jianwei Shen, Bing Wang, Chunmiao Jiang, Chong Liu. Identification of hub genes associated with bronchopulmonary dysplasia in preterm infants based on machine learning[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 446-454.
[2] Yuanxing Wu, Jianwei Ren, Guangfa Zhu. Risk factors of patients with bloodstream infection in cardiac surgery[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(04): 230-237.
[3] Xiaoyan Wang, You Xiao, Ge Xiao, Zhenquan Wang. CT characteristics and risk factors of lung metastasis in elderly patients with colorectal cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(05): 506-509.
[4] JingJun Zhou, Hong Luo, Tao Chen. CT features and risk factors of lung metastasis in elderly patients with colorectal cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(04): 398-400.
[5] Huanqing Xiong, Yujuan Li, Jian Chen, Gang Liu, Zhichao Li, Faguang Jin. Synergistic protection of tanshinone IIA and matrine on lipopolysaccharide-induced acute lung injury in mice[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(04): 455-459.
[6] Xiaokuang Ning, Puming Hao, Rui Yan, Yunze Liu, Chengrun Li. Analysis of a study about single-direction three-port thoracoscopic surgery lobectomy for early-stage lung cancer[J]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2023, 16(04): 227-232.
[7] Di Wang, Shaocheng Lyu, Jincan Huang. Pancreatic metastasis of lung adenocarcinoma with portal vein invasion: a case report[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(04): 457-460.
[8] Haiyan Chen, Huimin Zhou, Jiaqi Cui. Moderate severe acute pancreatitis following transurethral cystoscopic holmium laser lithotripsy: report of one case[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(04): 461-463.
[9] Yan Zhang, Qiang Lyu, Xiao Han, Xu Wang, Ran Liu, Li Zhang, Xiangmei Chen. Characteristics of injury in kidney, heart, and lung of rats with crush syndrome[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(05): 248-253.
[10] Di Yu, Haibo Yu, Huancheng Wu, Yuming Li, Bin Su, Xin Chen. Effect of differential expression of hairy and enhancer of split homolog-1 on cholesterol-stimulated vascular endothelial cells[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(05): 264-270.
[11] Qiujie Shan, Lizhu Sun, Yiquan Xu, Zhixia Wang, Yan Xu, Hao Ma, Tiantian Liu. Construction and application of radiation-induced lung injury risk model for middle-aged and elderly patients with esophageal cancer during intensity modulated radiotherapy[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(06): 388-393.
[12] Xuefen Chen, Jingmin Deng. Literature review of 179 cases of primary pulmonary lymphoepithelioma-like carcinoma in the last 30 years[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(05): 551-556.
[13] Yan Li, Yibing Yao, Zhiyuan Mao, Haiyan Yu, Xin Liu, Zaiwen Fan. NCAPH expression in lung squamous cell carcinoma: clinical significance and relationship with immune microenvironment infiltration[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(04): 446-454.
[14] Yaqiong Xiong, Wenze Tian, Xuechun Leng, Zhenbing You, Xinqi Wei. Application of cluster intervention in postoperative intractable cough of lung cancer[J]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2023, 10(04): 207-212.
[15] Ning Li, Yan Liu, Huiqing Lin. Mechanism and prevention of ischemia-reperfusion injury of donor lung transplantation[J]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2023, 10(04): 247-256.
Viewed
Full text


Abstract