Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (04): 373 -379. doi: 10.3877/cma.j.issn.1673-5250.2021.04.001

Forum

Current research status on developmental trajectory of lung in premature infants

Haiyang Zhang, Hanmin Liu()   

  • Received:2021-03-11 Revised:2021-07-13 Published:2021-08-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Key Research and Development Project of Sichuan Science and Technology Department(2019YFS0037)

The development and maturation of human lung follows a fixed trajectory, and a variety of influencing factors in early life may lead to changes in this trajectory, thus changing the developmental outcomes of children′s respiratory system. Lung function test of premature infants can dynamically, accurately, non-invasively, early and repeatedly assess respiratory system status and understand characteristics of lung function in early life. Study on characteristics of premature infants′ lung development trajectory is helpful to better understand their respiratory system development and characteristics of their lung function transition to adult. This paper summarizes the trajectory pattern of premature infants′ lung development, and catch-up growth of premature infants′ lung development, influence factors of early life on trajectory of premature infants′ lung development and maturation, and other related studies.

[1]
Crump C, Sundquist J, Winkleby MA, et al. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study[J]. Lancet Child Adolesc Health, 2019, 3(6): 408-417. DOI: 10.1016/S2352-4642(19)30108-7.
[2]
Grant T, Brigham EP, McCormack MC. Childhood origins of adult lung disease as opportunities for prevention[J]. J Allergy Clin Immunol Pract, 2020, 8(3): 849-858. DOI: 10.1016/j.jaip.2020.01.015.
[3]
Gibbons J, Wilson AC, Simpson SJ. Predicting lung health trajectories for survivors of preterm birth[J]. Front Pediatr, 2020, 8: 318. DOI: 10.3389/fped.2020.00318.
[4]
Bui DS, Lodge CJ, Burgess JA, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life[J]. Lancet Respir Med, 2018, 6(7): 535-544. DOI: 10.1016/S2213-2600(18)30100-0.
[5]
Levin JC, Sheils CA, Gaffin JM, et al. Lung function trajectories in children with post-prematurity respiratory disease: identifying risk factors for abnormal growth[J]. Respir Res, 2021, 22(1): 143. DOI: 10.1186/s12931-021-01720-0.
[6]
Kaczmarczyk K, Wiszomirska I, Szturmowicz M, et al. Are preterm-born survivors at risk of long-term respiratory disease?[J]. Ther Adv Respir Dis, 2017, 11(7): 277-287. DOI: 10.1177/1753465817710595.
[7]
Doyle LW, Andersson S, Bush A, et al. Expiratory airflow in late adolescence and early adulthood in individuals born very preterm or with very low birthweight compared with controls born at term or with normal birthweight: a Meta-analysis of individual participant data[J]. Lancet Respir Med, 2019, 7(8): 677-686. DOI: 10.1016/S2213-2600(18)30530-7.
[8]
Watterberg KL, Demers LM, Scott SM, et al. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops[J]. Pediatrics, 1996, 97(2): 210-215.
[9]
Sarno L, Della Corte L, Saccone G, et al. Histological chorioamnionitis and risk of pulmonary complications in preterm births: a systematic review and Meta-analysis[J]. J Matern Fetal Neonatal Med, 2019: 1-10. DOI: 10.1080/14767058.2019.1689945.
[10]
Perniciaro S, Casarin J, Nosetti L, et al. Early- and late-respiratory outcome in very low birth weight with or without intrauterine inflammation[J]. Am J Perinatol, 2020, 37(S02): S76-S83. DOI: 10.1055/s-0040-1714257.
[11]
Liu PC, Hung YL, Shen CM, et al. Histological chorioamnionitis and its impact on respiratory outcome in very-low-birth-weight preterm infants[J]. Pediatr Neonatol, 2021, 62(3): 258-264. DOI: 10.1016/j.pedneo.2020.11.009.
[12]
Vardavas CI, Hohmann C, Patelarou E, et al. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children[J]. Eur Respir J, 2016, 48(1): 115-124. DOI: 10.1183/13993003.01016-2015.
[13]
Hoo AF, Henschen M, Dezateux C, et al. Respiratory function among preterm infants whose mothers smoked during pregnancy[J]. Am J Respir Crit Care Med, 1998, 158(3): 700-705. DOI: 10.1164/ajrccm.158.3.9711057.
[14]
Faber T, Kumar A, Mackenbach JP, et al. Effect of tobacco control policies on perinatal and child health: a systematic review and Meta-analysis[J]. Lancet Public Health, 2017, 2(9): e420-e437. DOI: 10.1016/S2468-2667(17)30144-5.
[15]
McEvoy CT, Shorey-Kendrick LE, Milner K, et al. Oral vitamin C (500 mg/d) to pregnant smokers improves infant airway function at 3 months (VCSIP). A randomized trial[J]. Am J Respir Crit Care Med, 2019, 199(9): 1139-1147. DOI: 10.1164/rccm.201805-1011OC.
[16]
McEvoy CT, Shorey-Kendrick LE, Milner K, et al. Vitamin C to pregnant smokers persistently improves infant airway function to 12 months of age: a randomised trial[J]. Eur Respir J, 2020: 1902208. DOI: 10.1183/13993003.02208-2019.
[17]
Farrar D, Simmonds M, Bryant M, et al. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and Meta-analysis[J]. BMJ, 2016, 354: i4694. DOI: 10.1136/bmj.i4694.
[18]
Hitaka D, Morisaki N, Miyazono Y, et al. Neonatal outcomes of very low birthweight infants born to mothers with hyperglycaemia in pregnancy: a retrospective cohort study in Japan[J]. BMJ Paediatr Open, 2019, 3(1): e000491. DOI: 10.1136/bmjpo-2019-000491.
[19]
Werner EF, Romano ME, Rouse DJ, et al. Association of gestational diabetes mellitus with neonatal respiratory morbidity[J]. Obstet Gynecol, 2019, 133(2): 349-353. DOI: 10.1097/AOG.0000000000003053.
[20]
Fan G, Wang B, Liu C, et al. Prenatal paracetamol use and asthma in childhood: a systematic review and Meta-analysis[J]. Allergol Immunopathol (Madr), 2017, 45(6): 528-533. DOI: 10.1016/j.aller.2016.10.014.
[21]
Magnus MC, Karlstad Ø, Håberg SE, et al. Prenatal and infant paracetamol exposure and development of asthma: the Norwegian Mother and Child Cohort Study[J]. Int J Epidemiol, 2016, 45(2): 512-522. DOI: 10.1093/ije/dyv366.
[22]
Piler P, Švancara J, Kukla L, et al. Role of combined prenatal and postnatal paracetamol exposure on asthma development: the Czech ELSPAC study[J]. J Epidemiol Community Health, 2018, 72(4): 349-355. DOI: 10.1136/jech-2017-209960.
[23]
Liew Z, Ernst A. Intrauterine exposure to acetaminophen and adverse developmental outcomes: epidemiological findings and methodological issues[J]. Curr Environ Health Rep, 2021, 8(1): 23-33. DOI: 10.1007/s40572-020-00301-5.
[24]
Popovic M, Rusconi F, Zugna D, et al. Prenatal exposure to antibiotics and wheezing in infancy: a birth cohort study[J]. Eur Respir J, 2016, 47(3): 810-817. DOI: 10.1183/13993003.00315-2015.
[25]
Momen NC, Liu X. Maternal antibiotic use during pregnancy and asthma in children: population-based cohort study and sibling design[J]. Eur Respir J, 2021, 57(1): 2000937. DOI: 10.1183/13993003.00937-2020.
[26]
Go M, Schilling D, Nguyen T, et al. Respiratory compliance in late preterm infants (340/7-346/7 weeks) after antenatal steroid therapy[J]. J Pediatr, 2018, 201: 21-26. DOI: 10.1016/j.jpeds.2018.05.037.
[27]
McEvoy C, Schilling D, Spitale P, et al. Pulmonary function and outcomes in infants randomized to a rescue course of antenatal steroids[J]. Pediatr Pulmonol, 2017, 52(9): 1171-1178. DOI: 10.1002/ppul.23711.
[28]
Simpson SJ, Logie KM, O′Dea CA, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth[J]. Thorax, 2017, 72(8): 702-711. DOI: 10.1136/thoraxjnl-2016-208985.
[29]
Turitz AL, Gyamfi-Bannerman C. Comparison of respiratory outcomes between preterm small-for-gestational-age and appropriate-for-gestational-age infants[J]. Am J Perinatol, 2017, 34(3): 283-288. DOI: 10.1055/s-0036-1586755.
[30]
Kuiper-Makris C, Zanetti D, Vohlen C, et al. Mendelian randomization and experimental IUGR reveal the adverse effect of low birth weight on lung structure and function[J]. Sci Rep, 2020, 10(1): 22395. DOI: 10.1038/s41598-020-79245-7.
[31]
Kim YH, Kim KW, Eun HS, et al. Small for gestational age birth may increase airflow limitation in bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2020, 55(2): 346-353. DOI: 10.1002/ppul.24580.
[32]
Jensen EA, Foglia EE, Dysart KC, et al. Adverse effects of small for gestational age differ by gestational week among very preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(2): F192-F198. DOI: 10.1136/archdischild-2017-314171.
[33]
Yang J, Kingsford RA, Horwood J, et al. Lung function of adults born at very low birth weight[J]. Pediatrics, 2020, 145(2): e20192359. DOI: 10.1542/peds.2019-2359.
[34]
Charles E, Hunt KA, Harris C, et al. Small for gestational age and extremely low birth weight infant outcomes[J]. J Perinat Med, 2019, 47(2): 247-251. DOI: 10.1515/jpm-2018-0295.
[35]
Thibaut F, Chagraoui A, Buckley L, et al. WFSBP * and IAWMH ** Guidelines for the treatment of alcohol use disorders in pregnant women[J]. World J Biol Psychiatry, 2019, 20(1): 17-50. DOI: 10.1080/15622975.2018.1510185.
[36]
Carson G, Cox LV, Crane J, et al. No. 245-alcohol use and pregnancy consensus clinical guidelines[J]. J Obstet Gynaecol Can, 2017, 39(9): e220-e254. DOI: 10.1016/j.jogc.2017.06.005.
[37]
Sundermann AC, Velez Edwards DR, Slaughter JC, et al. Week-by-week alcohol consumption in early pregnancy and spontaneous abortion risk: a prospective cohort study[J]. Am J Obstet Gynecol, 2021, 224(1): 97.e1-97.e16. DOI: 10.1016/j.ajog.2020.07.012.
[38]
汪正园,宋峻,黄翠花,等. 上海市614名孕妇饮酒行为及其对子女饮酒期望的研究[J]. 中国健康教育2016, 32(4): 341-343, 348. DOI: 10.16168/j.cnki.issn.1002-9982.2016.04.012.
[39]
Gauthier TW, Brown LA. In utero alcohol effects on foetal, neonatal and childhood lung disease[J]. Paediatr Respir Rev, 2017, 21: 34-37. DOI: 10.1016/j.prrv.2016.08.006.
[40]
Gray D, Willemse L, Visagie A, et al. Determinants of early-life lung function in African infants[J]. Thorax, 2017, 72(5): 445-450. DOI: 10.1136/thoraxjnl-2015-207401.
[41]
Muggli E, Matthews H, Penington A, et al. Association between prenatal alcohol exposure and craniofacial shape of children at 12 months of age[J]. JAMA Pediatr, 2017, 171(8): 771-780. DOI: 10.1001/jamapediatrics.2017.0778.
[42]
Balansky R, Ganchev G, Iltcheva M, et al. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model[J]. Toxicology, 2016, 373: 54-62. DOI: 10.1016/j.tox.2016.11.008.
[43]
Pérez-Tarazona S, Rueda Esteban S, García-García ML, et al. Respiratory outcomes of " new" bronchopulmonary dysplasia in adolescents: a multicenter study[J]. Pediatr Pulmonol, 2021, 56(5): 1205-1214. DOI: 10.1002/ppul.25226.
[44]
Lai SH, Chiang MC, Chu SM, et al. Evolution and determinants of lung function until late infancy among infants born preterm[J]. Sci Rep, 2020, 10(1): 490. DOI: 10.1038/s41598-019-57359-x.
[45]
Näsänen-Gilmore P, Sipola-Leppänen M, Tikanmäki M, et al. Lung function in adults born preterm[J]. PLoS One, 2018, 13(10): e0205979. DOI: 10.1371/journal.pone.0205979.
[46]
Vrijlandt EJLE, Reijneveld SA, Aris-Meijer JL, et al. Respiratory health in adolescents born moderately-late preterm in a community-based cohort[J]. J Pediatr, 2018, 203: 429-436. DOI: 10.1016/j.jpeds.2018.07.083.
[47]
Liu L, Pan Y, Zhu Y, et al. Association between rhinovirus wheezing illness and the development of childhood asthma: a Meta-analysis[J]. BMJ Open, 2017, 7(4): e013034. DOI: 10.1136/bmjopen-2016-013034.
[48]
Kitcharoensakkul M, Bacharier LB, Schweiger TL, et al. Lung function trajectories and bronchial hyperresponsiveness during childhood following severe RSV bronchiolitis in infancy[J]. Pediatr Allergy Immunol, 2021, 32(3): 457-464. DOI: 10.1111/pai.13399.
[49]
Scheltema NM, Nibbelke EE, Pouw J, et al. Respiratory syncytial virus prevention and asthma in healthy preterm infants: a randomised controlled trial[J]. Lancet Respir Med, 2018, 6(4): 257-264. DOI: 10.1016/S2213-2600(18)30055-9.
[50]
Drysdale SB, Alcazar M, Wilson T, et al. Functional and genetic predisposition to rhinovirus lower respiratory tract infections in prematurely born infants[J]. Eur J Pediatr, 2016, 175(12): 1943-1949. DOI: 10.1007/s00431-016-2780-0.
[51]
Hasegawa K, Mansbach JM, Bochkov YA, et al. Association of rhinovirus C bronchiolitis and immunoglobulin E sensitization during infancy with development of recurrent wheeze[J]. JAMA Pediatr, 2019, 173(6): 544-552. DOI: 10.1001/jamapediatrics.2019.0384.
[52]
Aldana-Aguirre JC, Pinto M, Featherstone RM, et al. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and Meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(1): F17-F23. DOI: 10.1136/archdischild-2015-310299.
[53]
Simpson SJ, Turkovic L, Wilson AC, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study[J]. Lancet Child Adolesc Health, 2018, 2(5): 350-359. DOI: 10.1016/S2352-4642(18)30064-6.
[54]
Dylag AM, Kopin HG, O′Reilly MA, et al. Early neonatal oxygen exposure predicts pulmonary morbidity and functional deficits at 1 year[J]. J Pediatr, 2020, 223: 20-28.e2. DOI: 10.1016/j.jpeds.2020.04.042.
[55]
于梅,黄金华,朱蓉,等. 枸橼酸咖啡因治疗对呼吸暂停早产儿早期肺功能的影响[J]. 中国当代儿科杂志2016, 18(3): 206-210. DOI: 10.7499/j.issn.1008-8830.2016.03.003.
[56]
Sanchez-Solis M, Garcia-Marcos PW, Agüera-Arenas J, et al. Impact of early caffeine therapy in preterm newborns on infant lung function[J]. Pediatr Pulmonol, 2020, 55(1): 102-107. DOI: 10.1002/ppul.24540.
[57]
Doyle LW, Ranganathan S, Cheong J. Neonatal caffeine treatment and respiratory function at 11 years in children under 1,251 g at birth[J]. Am J Respir Crit Care Med, 2017, 196(10): 1318-1324. DOI: 10.1164/rccm.201704-0767OC.
[58]
Harris C, Crichton S, Zivanovic S, et al. Effect of dexamethasone exposure on the neonatal unit on the school age lung function of children born very prematurely[J]. PLoS One, 2018, 13(7): e0200243. DOI: 10.1371/journal.pone.0200243.
[59]
Tukova J, Smisek J, Zlatohlavkova B, et al. Early inhaled budesonide in extremely preterm infants decreases long-term respiratory morbidity[J]. Pediatr Pulmonol, 2020, 55(5): 1124-1130. DOI: 10.1002/ppul.24704.
[1] Ruizhi Dai, Meichi Huo, Zheng Li. Clinical efficacy of noninvasive high-frequency oscillation ventilation in premature infants with respiratory distress syndrome[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2022, 15(05): 372-378.
[2] Zhengyun Hu, Jianwei Shi, Jianwei Shen, Bing Wang, Chunmiao Jiang, Chong Liu. Identification of hub genes associated with bronchopulmonary dysplasia in preterm infants based on machine learning[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 446-454.
[3] Ping Yang, Shimin Xu, Liangliang Li, Xiangyun Yin, Hongmin Xi, Lili Ma, Xianghong Li. Influencing factors of bronchopulmonary dysplasia complicated with metabolic bone disease in preterm infants[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(02): 202-211.
[4] Bing Yuan, Kai Yan. Current research status in treatment of preterm infants with bronchopulmonary dysplasia by human amniotic epithelial stem cells[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 640-644.
[5] Hongling Fu, Hanmin Liu. Research progress on signaling pathways involved in bronchopulmonary dysplasia and pulmonary hypertension[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 497-505.
[6] Lung Transplantation Study Group, Branch of Organ Transplantation of Chinese Medical Association;, National Lung Transplantation Quality Control Center. Selection of lung transplant candidates with COVID-19: Advises from China lung transplant expert group[J]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(01): 13-16.
[7] Ting Luo, Shi Zhang. Prognostic analysis of 5 biomarkers for acute respiratory distress syndrome[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(04): 471-475.
[8] Zongjun Hu, Xi Yue, Xia Huang. Effect of bronchopulmonary segments recruitment on the survival of patients with severe acute respiratory distress syndrome[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(06): 796-800.
[9] Rui Chen, Hongna Yang, Wei Fang, Xinxin Li, Tiantian Li, Xiaoyi Yu, Yanxue Wang, Wenyu Li. Correlation between the cytokine levels in serum and BALF and intrapulmonary and extrapulmonary ARDS[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(03): 251-258.
[10] Meiqing Wu, Jin Lin, Meili Duan, Xiaoyan Xue. Effect of high density lipoprotein level on the occurrence of sepsis-related acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(02): 191-197.
[11] Jieqiong Wang, Huixia Wang, Huiying Zhao, Youzhong An. Regulation of angiotensin converting enzyme 2 on inflammatory injury of human pulmonary microvascular endothelial cells[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 78-83.
[12] Dongyu Chen, Chun Pan, Yi Yang. Techniques to monitor respiratory effort in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 84-88.
[13] Chengfen Yin, Lei Xu. Talk about the timing of prone position ventilation again[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 9-13.
[14] Jingen Xia, Shiyu Hu. Application scenario of extracorporeal carbon dioxide removal technology in Intensive Care Unit[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 40-45.
[15] Mingjing Lin, Dong Cai, Wenting Feng, Fangfang Wu, Kaiyan Zhang. Risk factors for bronchopulmonary dysplasia in premature infants born from 2017 to 2019[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(09): 908-913.
Viewed
Full text


Abstract