[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30. DOI: 10.3322/caac.21442.
|
[2] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
|
[3] |
Bhatla N, Denny L. FIGO Cancer Report 2018[J].Int J Gynaecol Obstet, 2018, 143(Suppl2): 2-3. DOI: 10.1002/ijgo.12608.
|
[4] |
Lee JW, Dubinsky T, Andreotti R, et al. ACR appropriateness criteria ® pretreatment evaluation and follow-up of endometrial cancer of the uterus[J]. Ultrasound Q, 2011, 27(2): 139-145. DOI: 10.1097/RUQ.0b013e31821b6f73.
|
[5] |
Christensen JW, Dueholm M, Hansen ES, et al. Assessment of myometrial invasion in endometrial cancer using three-dimensional ultrasound and magnetic resonance imaging[J]. Acta Obstet Gynecol Scand, 2016, 95(1): 55-64. DOI: 10.1111/aogs.12806.
|
[6] |
Alcázar JL, Gastón B, Navarro B, et al. Transvaginal ultrasound versus magnetic resonance imaging for preoperative assessment of myometrial infiltration in patients with endometrial cancer: a systematic review and Meta-analysis[J]. J Gynecol Oncol, 2017, 28(6): e86. DOI: 10.3802/jgo.2017.28.e86.
|
[7] |
|
[8] |
Kara Bozkurt D, Bozkurt M, Nazli MA, et al. Diffusion-weighted and diffusion-tensor imaging of normal and diseased uterus[J]. World J Radiol, 2015, 7(7): 149-156. DOI: 10.4329/wjr.v7.i7.149.
|
[9] |
He Y, Ding N, Li Y, et al. 3-T diffusion tensor imaging (DTI) of normal uterus in young and middle-aged females during the menstrual cycle: evaluation of the cyclic changes of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values [J]. Br J Radiol, 2015, 88(1049): 20150043. DOI: 10.1259/bjr.20150043.
|
[10] |
Kido A, Togashi K. Uterine anatomy and function on cine magnetic resonance imaging[J]. Reprod Med Biol, 2016, 15(4): 191-199. DOI: 10.1007/s12522-016-0235-y.
|
[11] |
Hameeduddin A, Sahdev A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies[J]. Cancer Imaging, 2015, 15(1): 1-12. DOI: 10.1186/s40644-015-0037-1.
|
[12] |
Gordon Y, Partovi S, Müller-Eschner M, et al. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion[J]. Cardiovasc Diagn Ther, 2014, 4(2): 147-164. DOI: 10.3978/j.issn.2223-3652.2014.03.01.
|
[13] |
Jahng GH, Li KL, Østergaard L, et al. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques[J]. Korean J Radiol, 2014, 15(5): 554-577. DOI: 10.3348/kjr.2014.15.5.554.
|
[14] |
Khalifa F, Soliman A, El-Baz A, et al. Models and methods for analyzing DCE-MRI: a review [J]. Med Phys, 2014, 41(12): 124301. DOI: 10.1118/1.4898202.
|
[15] |
Türkbey B, Thomasson D, Pang Y, et al.The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment[J].Diagn Interv Radiol, 2010, 16(3): 186-192. DOI: 10.4261/1305-3825.DIR.2537-08.1.
|
[16] |
Winfield JM, Payne GS, Weller A, et al. DCE-MRI, DW-MRI, and MRS in cancer: challenges and advantages of implementing qualitative and quantitative multi-parametric imaging in the clinic [J].Top Magn Reson Imaging, 2016, 25(5): 245-254. DOI: 10.1097/RMR.0000000000000103.
|
[17] |
Kim H, Arnoletti PJ, Christein J, et al. Pancreatic adenocarcinoma: a pilot study of quantitative perfusion and diffusion-weighted breath-hold magnetic resonance imaging [J]. Abdom Imaging, 2014, 39(4): 744-752. DOI: 10.1007/s00261-014-0107-z.
|
[18] |
Drisis S, Metens T, Ignatiadis M, et al. Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy[J]. Eur Radiol, 2016, 26(5): 1474-1484. DOI: 10.1007/s00330-015-3948-0.
|
[19] |
Koh TS, Bisdas S, Koh DM, et al. Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2011, 34(6): 1262-1276. DOI: 10.1002/jmri.22795.
|
[20] |
|
[21] |
Larsson HB, Fritz-Hansen T, Rostrup E, et al. Myocardial perfusion modeling using MRI[J]. Magn Reson Med, 1996, 35(5): 716-726. DOI: 10.1002/mrm.1910350513.
|
[22] |
Brix G, Bahner ML, Hoffmann U, et al. Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT-initial experience[J]. Radiology, 1999, 210(1): 269-276. DOI: 10.1148/radiology.210.1.r99ja46269.
|
[23] |
St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: Ⅱ. Experimental validation[J].Exp Validat J Cereb Blood Flow Metab, 1998, 18(12): 1378-1385. DOI: 10.1097/00004647-199812000-00012.
|
[24] |
Koh TS, Thng CH, Lee PS, et al. Hepatic metastases: in vivo assessment of perfusion parameters at dynamic contrast-enhanced MR imaging with dual-input two-compartment tracer kinetics model[J]. Radiology, 2008, 249(1): 307-320. DOI: 10.1148/radiol.2483071958.
|
[25] |
Baliyan V, Das CJ, Sharma R, et al. Diffusion weighted imaging: technique and applications[J]. World J Radiol, 2016,8(9): 785-798. DOI: 10.4329/wjr.v8.i9.785.
|
[26] |
|
[27] |
Jensen JH, Helpern JA. MRI Quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010,23(7): 698-710.DOI: 10.1002/nbm.1518.
|
[28] |
|
[29] |
Truong TK, Song AW. Cortical depth dependence and implications on the neuronal specificity of the functional apparent diffusion coefficient contrast[J]. Neuroimage, 2009, 47(1): 65-68. DOI: 10.1016/j.neuroimage.2009.04.045.
|
[30] |
Fujima N, Yoshida D, Sakashita T, et al. Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous cell carcinoma: assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI[J]. Magn Reson Imag,2014, 32(10): 1206-1213. DOI: 10.1016/j.mri.2014.08.009.
|
[31] |
Iima M, Kataoka M, Kanao S, et al.Intravoxel incoherent motion and quantitative non-gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions[J]. Radiology,2018,287(2): 432-441. DOI: 10.1148/radiol.2017162853.
|
[32] |
Wissing M, Mitric C, Amajoud Z, et al. Risk factors for lymph nodes involvement in obese women with endometrial carcinomas [J]. Gynecol Oncol, 2019, 155(1): 27-33. DOI: 10.1016/j.ygyno.2019.07.016.
|
[33] |
Nougaret S, Horta M, Sala E, et al. Endometrial cancer MRI staging: updated Guidelines of the European Society of Urogenital Radiology[J]. Eur Radiol, 2019, 29(2): 792-805. DOI: 10.1007/s00330-018-5515-y.
|
[34] |
Zheng L, Zheng S, Yuan X, et al. Comparison of dynamic contrast-enhanced magnetic resonance imaging with T2-weighted imaging for preoperative staging of early endometrial carcinoma[J]. Onco Targets Ther, 2015, 8: 1743-1751. DOI: 10.2147/OTT.S86519.
|
[35] |
Carneiro MM, Lamaita RM, Ferreira MC, et al. Fertility-preservation in endometrial cancer: is it safe? Review of the literature[J]. JBRA Assist Reprod, 2016, 20(4): 232-239. DOI: 10.5935/1518-0557.20160045.
|
[36] |
Zhu L, Wang H, Zhu L, et al. Predictive and prognostic value of intravoxel incoherent motion (IVIM) MR imaging in patients with advanced cervical cancers undergoing concurrent chemo-radiotherapy[J]. Sci Rep, 2017, 7(1): 11635. DOI: 10.1038/s41598-017-11988-2.
|
[37] |
Haldorsen IS, Gruner R, Husby JA, et al. Dynamic contrast-enhanced MRI in endometrial carcinoma identifies patients at increased risk of recurrence[J]. Eur Radiol, 2013, 23(10): 2916-2925. DOI: 10.1007/s00330-013-2901-3.
|
[38] |
Beddy P, O′Neill AC, Yamamoto AK, et al. FIGO staging system for endometrial cancer: added benefits of MR imaging [J]. Radiographics, 2012, 32(1): 241-254. DOI: 10.1148/rg.321115045.
|
[39] |
Andreano A, Rechichi G, Rebora P, et al. MR diffusion imaging for preoperative staging of myometrial invasion in patients with endometrial cancer: a systematic review and Meta-analysis[J]. Eur Radiol,2014, 24(6): 1327-1338. DOI: 10.1007/s00330-014-3139-4.
|
[40] |
Bakir B, Sanli S, Bakir VL, et al. Role of diffusion weighted MRI in the differential diagnosis of endometrial cancer, polyp, hyperplasia, and physiological thickening[J]. Clin Imaging, 2017, 41(1): 86-94. DOI: 10.1016/j.clinimag.2016.10.016.
|
[41] |
Jiang JX, Zhao JL, Zhang Q, et al. Endometrial carcinoma: diffusion-weighted imaging diagnostic accuracy and correlation with Ki-67 expression[J]. Clin Radiol, 2018, 73(4): 413.e1-e413.e6. DOI: 10.1016/j.crad.2017.11.011.
|
[42] |
Sala E, Rockall A, Rangarajan D,et al. The role of dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging in the female pelvis[J]. Eur J Radiol, 2010, 76(3): 367-385. DOI: 10.1016/j.ejrad.2010.01.026.
|
[43] |
Kinkel K, Forstner R, Danza FM, et al. Staging of endometrial cancer with MRI: Guidelines of the European Society of Urogenital Radiology[J]. Eur Radiol, 2009, 19(7): 1565-1574. DOI: 10.1007/s00330-009-1309-6.
|
[44] |
Meissnitzer M, Forstner R. MRI of endometrium cancer - how we do it[J]. Cancer Imaging, 2016, 16: 11. DOI: 10.1186/s40644-016-0069-1.
|
[45] |
Sala E, Wakely S, Senior E, et al. MRI of malignant neoplasms of the uterine corpus and cervix [J]. AJR Am J Roentgenol, 2007, 188(6): 1577-1587. DOI: 10.2214/AJR.06.1196.
|
[46] |
|
[47] |
Sourbrons SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI [J]. NMR Biomed, 2013, 26(8): 1004-1027. DOI: 10.1002/nbm.2940.
|
[48] |
Fukunaga T, Fujii S, Inoue C, et al. Accuracy of semiquantitative dynamic contrast-enhanced MRI for differentiating type Ⅱ from type Ⅰ endometrial carcinoma[J]. J Magn Reson Imaging, 2015, 41(6): 1662-1668. DOI: 10.1002/jmri.24730.
|
[49] |
Todo Y, Kato H, Kaneuchi M, et al. Survival effect of paraaortic lymphadenectomy in endometrial cancer (SEPAL study): a retrospective cohort analysis [J]. Lancet, 2010, 375(9721): 1165-1172. DOI: 10.1016/S0140-6736(09)62002-X.
|
[50] |
Ippolito D, Cadonici A, Bonaffini PA, et al. Semiquantitative perfusion combined with diffusion-weighted MR imaging in preoperative evaluation of endometrial carcinoma: results in a group of 57 patients [J]. Magn Reson Imaging, 2014, 32(5): 464-472. DOI: 10.1016/j.mri.2014.01.009.
|
[51] |
Ippolito D, Minutolo O, Cadonici A, et al. Endometrial cancer: diagnostic value of quantitative measurements of microvascular changes with DCE-MR imaging [J]. MAGMA, 2014, 27(6): 531-538. DOI: 10.1007/s10334-014-0435-6.
|
[52] |
Haldorsen IS, Stefansson I, Gruner R, et al. Increased microvascular proliferation is negatively correlated to tumour blood flow and is associated with unfavourable outcome in endometrial carcinomas [J]. Br J Cancer, 2014, 110(1): 107-114. DOI: 10.1038/bjc.2013.694.
|
[53] |
Fasmer KE, Bjørnerud A, Ytre-Hauge S, et al. Preoperative quantitative dynamic contrast-enhanced MRI and diffusion-weighted imaging predict aggressive disease in endometrial cancer [J]. Acta Radiol, 2018, 59(8): 1010-1017. DOI: 10.1177/0284185117740932.
|
[54] |
Kitajima K, Yamasaki E, Kaji Y, et al. Comparison of DWI and PET/CT in evaluation of lymph node metastasis in uterine cancer [J]. World J Radiol, 2012, 4(5): 207-214. DOI: 10.4329/wjr.v4.i5.207.
|
[55] |
Gil RT, Cunha TM, Horta M, et al. The added value of diffusion-weighted imaging in the preoperative assessment of endometrial cancer [J]. Radiol Bras, 2019, 52(4): 229-236. DOI: 10.1590/0100-3984.2018.0054.
|
[56] |
Gallego JC, Porta A, Pardo MC, et al. Evaluation of myometrial invasion in endometrial cancer: comparison of diffusion-weighted magnetic resonance and intraoperative frozen sections [J]. Abdom Imaging, 2014, 39(5): 1021-1026. DOI: 10.1007/s00261-014-0134-9.
|
[57] |
Das SK, Niu XK, Wang JL, et al. Usefulness of DWI in preoperative assessment of deep myometrial invasion in patients with endometrial carcinoma: a systematic review and Meta-analysis [J]. Cancer Imaging, 2014, 14(1): 32. DOI: 10.1186/s40644-014-0032-y.
|
[58] |
Liu J, Wan Y, Wang Z, et al. Perfusion and diffusion characteristics of endometrial malignancy based on intravoxel incoherent motion MRI at 3.0 T: comparison with normal endometrium [J]. Acta Radiol, 2016, 57(9): 1140-1148. DOI: 10.1177/0284185115618550.
|
[59] |
Lee HJ, Rha SY, Chung YE, et al. Tumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: correlation with histological microvessel density [J]. Magn Reson Med, 2014, 71(4): 1554-1558. DOI: 10.1002/mrm.24810.
|
[60] |
Bhosale P, Ramalingam P, Ma J, et al. Can reduced field-of-view diffusion sequence help assess microsatellite instability in FIGO stage 1 endometrial cancer? [J]. J Magn Reson Imaging, 2017, 45(4): 1216-1224. DOI: 10.1002/jmri.25427.
|
[61] |
Fujimoto K, Kido A, Okada T, et al. Diffusion tensor imaging (DTI) of the normal human uterus in vivo at 3 tesla: comparison of DTI parameters in the different uterine layers [J]. J Magn Reson Imaging, 2013, 38(6): 1494-1500. DOI: 10.1002/jmri.24114.
|
[62] |
Ueno Y, Forghani B, Forghani R,et al. Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification-A preliminary analysis[J]. Radiology, 2017, 284(3): 748-757. DOI: 10.1148/radiol.2017161950.
|
[63] |
|
[64] |
Mazzon I, Corrado G, Masciullo V, et al. Conservative surgical management of stage Ⅰ A endometrial carcinoma for fertility preservation [J]. Fertil Steril, 2010, 93(4): 1286-1289. DOI: 10.1016/j.fertnstert.2008.12.009.
|
[65] |
|
[66] |
Wu LM, Xu JR, Gu HY, et al. Predictive value of T2-weighted imaging and contrast-enhanced MR imaging in assessing myometrial invasion in endometrial cancer: a pooled analysis of prospective studies [J]. Eur Radiol, 2013, 23(2): 435-449. DOI: 10.1007/s00330-012-2609-9.
|