切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2024, Vol. 20 ›› Issue (03) : 271 -275. doi: 10.3877/cma.j.issn.1673-5250.2024.03.005

生殖医学专辑

干细胞及其外泌体治疗宫腔黏连的研究现状
林琳1, 田思萌1, 于永华1, 徐飞飞1, 黄明莉1,()   
  1. 1. 哈尔滨医科大学附属第一医院妇产科,哈尔滨 150001
  • 收稿日期:2023-12-30 修回日期:2024-05-18 出版日期:2024-06-01
  • 通信作者: 黄明莉

Current research status on treatment of intrauterine adhesion by stem cells and their exosomes

Lin Lin1, Simeng Tian1, Yonghua Yu1, Feifei Xu1, Mingli Huang1,()   

  1. 1. Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
  • Received:2023-12-30 Revised:2024-05-18 Published:2024-06-01
  • Corresponding author: Mingli Huang
  • Supported by:
    National Natural Science Foundation of China(81401203)
引用本文:

林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.

Lin Lin, Simeng Tian, Yonghua Yu, Feifei Xu, Mingli Huang. Current research status on treatment of intrauterine adhesion by stem cells and their exosomes[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 271-275.

干细胞(stem cell)因其自我更新及多向分化潜能,成为再生医学的研究热点。干细胞分泌的外泌体(exosomes),不仅含有特异的多能转录因子,还含有丰富的非编码RNA,作为细胞间通信介质,可上调抗凋亡基因表达,下调促凋亡基因表达,抑制受损子宫内膜细胞或组织凋亡。目前,临床对宫腔黏连(IUA)患者的传统治疗策略,尽管可暂时恢复其子宫形状及宫腔容量,但是并不能解决严重IUA患者子宫内膜再生问题。子宫内膜健康是育龄女性成功妊娠的主要因素之一。重塑IUA患者受损子宫内膜结构与功能,改善其微环境和耐受状态,对于提高不孕症患者妊娠率具有十分重要的临床意义。笔者拟就基于大鼠动物实验的干细胞及其外泌体对IUA治疗的研究概况及二者治疗IUA的可能机制的最新研究现状进行阐述。

Stem cells have become a hot research field in regenerative medicine due to their self-renewal and multidirectional differentiation potential. Exosomes secreted by stem cells not only contain specific pluripotent transcription factors, but also contain abundant non-coding RNA, which acts as a medium for intercellular communication, up-regulating anti-apoptotic genes expression, down-regulating pro-apoptotic genes expression, and inhibiting apoptosis of damaged cells or tissues. At present, the traditional treatment of intrauterine adhesion (IUA) can only temporarily restore the shape of uterus and uterine volume, but cannot solve the problem of endometrial regeneration in severe cases. Endometrial health is one of the main factors affecting pregnancy of childbearing age women. Therefore, it is of great clinical significance to explore how to reshape the structure and function of damaged endometrium, improve its microenvironment and tolerance status, and improve the pregnancy rate of infertility patients. This article briefly reviewed the research progress of stem cells and their derived exosomes therapy for IUA based on rat animal experiments, and the possible mechanisms of stem cells and their derived exosomes in treating IUA.

[1]
程丹,龚月宾,陈娇,等. 羊膜移植在宫腔镜下宫腔黏连分离术后预防宫腔黏连复发中的有效性和安全性[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(4): 420-425. DOI: 10.3877/cma.j.issn.1673-5250.2019.04.011.
[2]
罗丹,孔为民,陈姝宁,等. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化 [J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(5): 530-539. DOI: 10.3877/cma.j.issn.1673-5250.2023.05.006.
[3]
Hooke AB, Lemmers M, Thurkow AL, et al. Systematic review and Meta-analysis of intrauterine adhesions after miscarriage: prevalence, risk factors and long-term reproductive outcome[J]. Hum Reprod Update, 2014, 20(2): 262-278.DOI: 10.1093/humupd/dmt045.
[4]
Xu L, Ding L, Wang L, et al. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars[J]. Stem Cell Res Ther, 2017, 8(1): 84. DOI: 10.1186/s13287-017-0535-0.
[5]
Schenker JG, Margalioth EJ. Intrauterine adhesions:an updated appraisal[J]. Fertil.Steril, 1982, 37(5): 593-610. DOI: 10.1016/s0015-0282(16)46268-0.
[6]
Nadig RR. Stem cell therapy-hype or hope? A review[J]. J Conserv Dent, 2009, 12(4): 131-138. DOI: 10.4103/0972-0707.58329.
[7]
Szymański R, Kamiński P, Marianowski L. Electroresectoscopy in submucous fibroids, intrauterine adhesions and uterine malformation treatment[J]. Ginekol Pol, 2000, 71(9): 1031-1035.
[8]
Roy KK, Baruah J, Sharma JB, et al. Reproductive outcome following hysteroscopic adhesiolysis in patients with infertility due to Asherman′s syndrome[J]. Arch Gynecol Obstet, 2010, 281(2): 355-361. DOI: 10.1007/s00404-009-1117-x.
[9]
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321. DOI: 10.1038/nature07039.
[10]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317. DOI: 10.1080/14653240600855905.
[11]
Yoon DS, Choi Y, Lee JW. Cellular localization of nrF2 determines the self-renewal and osteogenic differentiation potential of human MScs via the P53-SirT1 axis[J]. Cell Death Dis, 2016, 7(2): e2093. DOI: 10.1038/cddis.2016.3.
[12]
Sahoo AK, Das JK, Nayak S. Isolation, culture, characterization, and osteogenic differentiation of canine endometrial mesenchymal stem cell[J]. Vet World, 2017, 10(12): 1533-1541. DOI: 10.14202/vetworld.2017.1533-1541.
[13]
Berman JM. Intrauterine adhesions[J]. Semin Reprod Med, 2008, 26(4): 349-355. DOI: 10.1055/s-0028-1082393.
[14]
LV CX, Duan H, Wang S, et al. Exosomes derived from human umbilical cord mesenchymal stem cells promote proliferation of allogeneic endometrial stromal cells[J]. Reprod Sci, 2020, 27(6): 1372-1381. DOI: 10.1007/s43032-020-00165-y.
[15]
Han X, Ma YJ, Lu X, et al. Transplantation of human adipose stem cells using acellular human amniotic membrane improves angiogenesis in injured endometrial tissue in a rat intrauterine adhesion model[J]. Cell Transplantat, 2020, 29: 963689720952055. DOI: 10.1177/0963689720952055.
[16]
Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication [J]. Curr Opin Cell Biol, 2019, 21(4): 575-581. DOI: 10.1016/j.ceb.2009.03.007.
[17]
Kishore R, Khan M. More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair[J]. Circ Res, 2016, 118(2): 330-343. DOI: 10.1161/CIRCRESAHA.115.307654.
[18]
Liang X, Ding Y, Zhang Y, et al. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives[J]. Cell Transplantation, 2014, 23(9): 1045-1059. DOI: 10.3727/096368913X667709.
[19]
Fatima F, Ekstrom K, Nazarenko I, et al. Non-coding RNAs in mesenchymal stem cell-derived extracellular vesicles: deciphering regulatory roles in stem cell potency, inflammatory resolve, and tissue regeneration[J]. Front Genet, 2017, 8: 161. DOI: 10.3389/fgene.2017.00161.
[20]
Shao M, Xu Q, Wu Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorated IL-6-induced acute liver injury through miR-455-3p[J]. Stem Cell Res Ther, 2020, 11(1): 37. DOI: 10.1186/s13287-020-1550-0.
[21]
Zhang B, Yeo RW, Tan KH, et al. Focus on extracellular vesicles: therapeutic potential of stem cell-derived extracellular vesicles[J]. Int J Mol Sci, 2016, 17(2): 174. DOI: 10.3390/ijms17020174.
[22]
Vader P, Mol EA, Pasterkamp G, et al. Extracellular vesicles for drug delivery[J]. Adv Drug Delivery Rev, 2016, 106(Pt A): 148-156. DOI: 10.1016/j.addr.2016.02.006.
[23]
Shekhter AB, Fayzullin AL, Vukolova MN, et al. Medical applications of collagen and collagen-based meterials[J]. Curr Med Chem, 2019, 26(3): 506-516. DOI: 10.2174/0929867325666171205170339.
[24]
Liu Z, Yin X, Ye Q, et al. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold[J]. Biomater Appl, 2016, 31(1): 121-131. DOI: 10.1177/0885328216637978.
[25]
Neha C, Braham DA, Namrata J, et al. Biophysical characterization and drug delivery potential of exosomes from human Wharton′s jelly-derived mesenchymal stem cells[J]. ACS Omega, 2019, 4(8): 13143-13152. DOI: 10.1021/acsomega.9b01180.
[26]
Zhang L, Li Y, Guan CY, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase[J]. Stem Cell Res Ther, 2018, 9(1): 36. DOI: 10.1186/s13287-018-0777-5.
[27]
Bourdiec A, Ahmad SF, Lachhab A, et al. Regulation of inflammatory and angiogenesis mediators in a functional model of decidualized endometrial stromal cells[J]. Reprod Biomed Online, 2016, 32(1): 85-95. DOI: 10.1016/j.rbmo.2015.09.011.
[28]
Wang JM, Ju BH, Pan CJ, et al. Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats[J]. Cell Physiol Biochem, 2016, 39(4): 1553-1560. DOI: 10.1159/000447857.
[29]
Xin LB, Lin XN, Zhou F, et al. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation[J]. Acta Biomater, 2020, 113: 252-266. DOI: 10.1016/j.actbio.2020.06.029.
[30]
Wang J, Hu R, Xiang Q, et al. Exosomes derived from umbilical cord mesenchymal stem cells alleviate mifepristone-induced human endometrial stromal cell injury[J]. Stem Cell Int, 2020, 2020: 6091269. DOI: 10.1155/2020/6091269.
[31]
Saribas GS, Ozogul C, Tiryaki M, et al. Effects of uterus derived mesenchymal stem cells and their exosomes on Asherman′s syndrome[J]. Acta Histochemica, 2020, 122(1): 151465. DOI: 10.1016/j.acthis.2019.151465.
[32]
Leung Rk, Lin YX, Liu YH. Recent advances in understandings towards pathogenesis and treatment for intrauterine adhesion and disruptive insights from single-cell analysis[J]. Reprod Sci, 2021, 28(7): 1812-1826. DOI: 10.1007/s43032-020-00343-y.
[33]
Xin L, Lin X, Pan Y, et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility[J]. Acta Biomaterialia, 2019, 92: 160-171. DOI: 10.1016/j.actbio.2019.05.012.
[34]
Shang F, Liu S, Ming L, et al. Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect[J]. Theranostics, 2017, 7(18): 4370-4382. DOI: 10.7150/thno.19888.
[1] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[4] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[5] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[6] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[7] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[8] 杜鑫, 刘霞霞, 张恬波, 张夏林, 杨林花, 张睿娟. AHNAK基因高表达与老年急性髓系白血病患者预后不良相关[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 204-211.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 陈莉, 何斌, 赵庆辉, 李翀, 汤红明, 刘中民. 干细胞新兴学科人才建设的实践与探索[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 176-180.
[12] 郭煦妍, 罗志嵘, 薛琦, 王林猛, 吉运华, 张波. 3D生物打印在肾脏再生领域的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 181-185.
[13] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[14] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[15] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
阅读次数
全文


摘要