切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2024, Vol. 20 ›› Issue (03) : 271 -275. doi: 10.3877/cma.j.issn.1673-5250.2024.03.005

生殖医学专辑

干细胞及其外泌体治疗宫腔黏连的研究现状
林琳1, 田思萌1, 于永华1, 徐飞飞1, 黄明莉1,()   
  1. 1. 哈尔滨医科大学附属第一医院妇产科,哈尔滨 150001
  • 收稿日期:2023-12-30 修回日期:2024-05-18 出版日期:2024-06-01
  • 通信作者: 黄明莉

Current research status on treatment of intrauterine adhesion by stem cells and their exosomes

Lin Lin1, Simeng Tian1, Yonghua Yu1, Feifei Xu1, Mingli Huang1,()   

  1. 1. Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
  • Received:2023-12-30 Revised:2024-05-18 Published:2024-06-01
  • Corresponding author: Mingli Huang
  • Supported by:
    National Natural Science Foundation of China(81401203)
引用本文:

林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.

Lin Lin, Simeng Tian, Yonghua Yu, Feifei Xu, Mingli Huang. Current research status on treatment of intrauterine adhesion by stem cells and their exosomes[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 271-275.

干细胞(stem cell)因其自我更新及多向分化潜能,成为再生医学的研究热点。干细胞分泌的外泌体(exosomes),不仅含有特异的多能转录因子,还含有丰富的非编码RNA,作为细胞间通信介质,可上调抗凋亡基因表达,下调促凋亡基因表达,抑制受损子宫内膜细胞或组织凋亡。目前,临床对宫腔黏连(IUA)患者的传统治疗策略,尽管可暂时恢复其子宫形状及宫腔容量,但是并不能解决严重IUA患者子宫内膜再生问题。子宫内膜健康是育龄女性成功妊娠的主要因素之一。重塑IUA患者受损子宫内膜结构与功能,改善其微环境和耐受状态,对于提高不孕症患者妊娠率具有十分重要的临床意义。笔者拟就基于大鼠动物实验的干细胞及其外泌体对IUA治疗的研究概况及二者治疗IUA的可能机制的最新研究现状进行阐述。

Stem cells have become a hot research field in regenerative medicine due to their self-renewal and multidirectional differentiation potential. Exosomes secreted by stem cells not only contain specific pluripotent transcription factors, but also contain abundant non-coding RNA, which acts as a medium for intercellular communication, up-regulating anti-apoptotic genes expression, down-regulating pro-apoptotic genes expression, and inhibiting apoptosis of damaged cells or tissues. At present, the traditional treatment of intrauterine adhesion (IUA) can only temporarily restore the shape of uterus and uterine volume, but cannot solve the problem of endometrial regeneration in severe cases. Endometrial health is one of the main factors affecting pregnancy of childbearing age women. Therefore, it is of great clinical significance to explore how to reshape the structure and function of damaged endometrium, improve its microenvironment and tolerance status, and improve the pregnancy rate of infertility patients. This article briefly reviewed the research progress of stem cells and their derived exosomes therapy for IUA based on rat animal experiments, and the possible mechanisms of stem cells and their derived exosomes in treating IUA.

[1]
程丹,龚月宾,陈娇,等. 羊膜移植在宫腔镜下宫腔黏连分离术后预防宫腔黏连复发中的有效性和安全性[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(4): 420-425. DOI: 10.3877/cma.j.issn.1673-5250.2019.04.011.
[2]
罗丹,孔为民,陈姝宁,等. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化 [J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(5): 530-539. DOI: 10.3877/cma.j.issn.1673-5250.2023.05.006.
[3]
Hooke AB, Lemmers M, Thurkow AL, et al. Systematic review and Meta-analysis of intrauterine adhesions after miscarriage: prevalence, risk factors and long-term reproductive outcome[J]. Hum Reprod Update, 2014, 20(2): 262-278.DOI: 10.1093/humupd/dmt045.
[4]
Xu L, Ding L, Wang L, et al. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars[J]. Stem Cell Res Ther, 2017, 8(1): 84. DOI: 10.1186/s13287-017-0535-0.
[5]
Schenker JG, Margalioth EJ. Intrauterine adhesions:an updated appraisal[J]. Fertil.Steril, 1982, 37(5): 593-610. DOI: 10.1016/s0015-0282(16)46268-0.
[6]
Nadig RR. Stem cell therapy-hype or hope? A review[J]. J Conserv Dent, 2009, 12(4): 131-138. DOI: 10.4103/0972-0707.58329.
[7]
Szymański R, Kamiński P, Marianowski L. Electroresectoscopy in submucous fibroids, intrauterine adhesions and uterine malformation treatment[J]. Ginekol Pol, 2000, 71(9): 1031-1035.
[8]
Roy KK, Baruah J, Sharma JB, et al. Reproductive outcome following hysteroscopic adhesiolysis in patients with infertility due to Asherman′s syndrome[J]. Arch Gynecol Obstet, 2010, 281(2): 355-361. DOI: 10.1007/s00404-009-1117-x.
[9]
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321. DOI: 10.1038/nature07039.
[10]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317. DOI: 10.1080/14653240600855905.
[11]
Yoon DS, Choi Y, Lee JW. Cellular localization of nrF2 determines the self-renewal and osteogenic differentiation potential of human MScs via the P53-SirT1 axis[J]. Cell Death Dis, 2016, 7(2): e2093. DOI: 10.1038/cddis.2016.3.
[12]
Sahoo AK, Das JK, Nayak S. Isolation, culture, characterization, and osteogenic differentiation of canine endometrial mesenchymal stem cell[J]. Vet World, 2017, 10(12): 1533-1541. DOI: 10.14202/vetworld.2017.1533-1541.
[13]
Berman JM. Intrauterine adhesions[J]. Semin Reprod Med, 2008, 26(4): 349-355. DOI: 10.1055/s-0028-1082393.
[14]
LV CX, Duan H, Wang S, et al. Exosomes derived from human umbilical cord mesenchymal stem cells promote proliferation of allogeneic endometrial stromal cells[J]. Reprod Sci, 2020, 27(6): 1372-1381. DOI: 10.1007/s43032-020-00165-y.
[15]
Han X, Ma YJ, Lu X, et al. Transplantation of human adipose stem cells using acellular human amniotic membrane improves angiogenesis in injured endometrial tissue in a rat intrauterine adhesion model[J]. Cell Transplantat, 2020, 29: 963689720952055. DOI: 10.1177/0963689720952055.
[16]
Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication [J]. Curr Opin Cell Biol, 2019, 21(4): 575-581. DOI: 10.1016/j.ceb.2009.03.007.
[17]
Kishore R, Khan M. More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair[J]. Circ Res, 2016, 118(2): 330-343. DOI: 10.1161/CIRCRESAHA.115.307654.
[18]
Liang X, Ding Y, Zhang Y, et al. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives[J]. Cell Transplantation, 2014, 23(9): 1045-1059. DOI: 10.3727/096368913X667709.
[19]
Fatima F, Ekstrom K, Nazarenko I, et al. Non-coding RNAs in mesenchymal stem cell-derived extracellular vesicles: deciphering regulatory roles in stem cell potency, inflammatory resolve, and tissue regeneration[J]. Front Genet, 2017, 8: 161. DOI: 10.3389/fgene.2017.00161.
[20]
Shao M, Xu Q, Wu Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorated IL-6-induced acute liver injury through miR-455-3p[J]. Stem Cell Res Ther, 2020, 11(1): 37. DOI: 10.1186/s13287-020-1550-0.
[21]
Zhang B, Yeo RW, Tan KH, et al. Focus on extracellular vesicles: therapeutic potential of stem cell-derived extracellular vesicles[J]. Int J Mol Sci, 2016, 17(2): 174. DOI: 10.3390/ijms17020174.
[22]
Vader P, Mol EA, Pasterkamp G, et al. Extracellular vesicles for drug delivery[J]. Adv Drug Delivery Rev, 2016, 106(Pt A): 148-156. DOI: 10.1016/j.addr.2016.02.006.
[23]
Shekhter AB, Fayzullin AL, Vukolova MN, et al. Medical applications of collagen and collagen-based meterials[J]. Curr Med Chem, 2019, 26(3): 506-516. DOI: 10.2174/0929867325666171205170339.
[24]
Liu Z, Yin X, Ye Q, et al. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold[J]. Biomater Appl, 2016, 31(1): 121-131. DOI: 10.1177/0885328216637978.
[25]
Neha C, Braham DA, Namrata J, et al. Biophysical characterization and drug delivery potential of exosomes from human Wharton′s jelly-derived mesenchymal stem cells[J]. ACS Omega, 2019, 4(8): 13143-13152. DOI: 10.1021/acsomega.9b01180.
[26]
Zhang L, Li Y, Guan CY, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase[J]. Stem Cell Res Ther, 2018, 9(1): 36. DOI: 10.1186/s13287-018-0777-5.
[27]
Bourdiec A, Ahmad SF, Lachhab A, et al. Regulation of inflammatory and angiogenesis mediators in a functional model of decidualized endometrial stromal cells[J]. Reprod Biomed Online, 2016, 32(1): 85-95. DOI: 10.1016/j.rbmo.2015.09.011.
[28]
Wang JM, Ju BH, Pan CJ, et al. Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats[J]. Cell Physiol Biochem, 2016, 39(4): 1553-1560. DOI: 10.1159/000447857.
[29]
Xin LB, Lin XN, Zhou F, et al. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation[J]. Acta Biomater, 2020, 113: 252-266. DOI: 10.1016/j.actbio.2020.06.029.
[30]
Wang J, Hu R, Xiang Q, et al. Exosomes derived from umbilical cord mesenchymal stem cells alleviate mifepristone-induced human endometrial stromal cell injury[J]. Stem Cell Int, 2020, 2020: 6091269. DOI: 10.1155/2020/6091269.
[31]
Saribas GS, Ozogul C, Tiryaki M, et al. Effects of uterus derived mesenchymal stem cells and their exosomes on Asherman′s syndrome[J]. Acta Histochemica, 2020, 122(1): 151465. DOI: 10.1016/j.acthis.2019.151465.
[32]
Leung Rk, Lin YX, Liu YH. Recent advances in understandings towards pathogenesis and treatment for intrauterine adhesion and disruptive insights from single-cell analysis[J]. Reprod Sci, 2021, 28(7): 1812-1826. DOI: 10.1007/s43032-020-00343-y.
[33]
Xin L, Lin X, Pan Y, et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility[J]. Acta Biomaterialia, 2019, 92: 160-171. DOI: 10.1016/j.actbio.2019.05.012.
[34]
Shang F, Liu S, Ming L, et al. Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect[J]. Theranostics, 2017, 7(18): 4370-4382. DOI: 10.7150/thno.19888.
[1] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[2] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[6] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[7] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[8] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[9] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[12] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[15] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?