[1] |
Zanetti BF, Braga DPAF, Setti AS, et al. Effect of GnRH analogues for pituitary suppression on oocyte morphology in repeated ovarian stimulation cycles[J]. JBRA Assist Reprod, 2020, 24(1): 24-29. DOI: 201910.5935/1518-0557.20190050.
|
[2] |
|
[3] |
|
[4] |
Xia M, Zheng J. Comparison of clinical outcomes between the depot gonadotrophin-releasing hormone agonist protocol and gonadotrophin-releasing hormone antagonist protocol in normal ovarian responders[J]. BMC Pregnancy Childbirth, 2021, 21(1): 372. DOI: 10.1186/s12884-021-03849-8.
|
[5] |
Geng Y, Xun Y, Hu S, et al. GnRH antagonist versus follicular-phase single-dose GnRH agonist protocol in patients of normal ovarian responses during controlled ovarian stimulation[J]. Gynecol Endocrinol, 2019, 35(4): 309-313. DOI: 10.1080/09513590.2018.1528221.
|
[6] |
Chen Q, Fan Y, Zhou X, et al. GnRH antagonist alters the migration of endometrial epithelial cells by reducing CKB[J]. Reproduction, 2020, 159(6): 733-743. DOI: 10.1530/REP-19-0578.
|
[7] |
Tempest N, Batchelor E, Hill CJ, et al. Anterior gradient protein 3 and S100 calcium-binding protein P levels in different endometrial epithelial compartments may play an important role in recurrent pregnancy failure[J]. Int J Mol Sci, 2021, 22(8): 3835. DOI: 10.3390/ijms22083835.
|
[8] |
Zhang D, Han M, Zhou M, et al. Down-regulation of S100P induces apoptosis in endometrial epithelial cell during GnRH antagonist protocol[J]. Reprod Biol Endocrinol, 2021, 19(1): 99. DOI: 10.1186/s12958-021-00787-0.
|
[9] |
陈骞. 促性腺激素释放激素拮抗剂对人子宫内膜容受性的影响及其机制研究[D]. 上海:上海交通大学,2016.
|
[10] |
Sini I, Handayani N, Harahap A, et al. Role of three-dimensional Doppler ultrasonography and leukemia inhibitory factor from endometrial secretion in predicting endometrial receptivity in IVF treatment: a pilot study[J]. Arch Gynecol Obstet, 2022, 306(1): 259-265. DOI: 10.1007/s00404-022-06450-2.
|
[11] |
Xu B, Geerts D, Hu S, et al. The depot GnRH agonist protocol improves the live birth rate per fresh embryo transfer cycle, but not the cumulative live birth rate in normal responders: a randomized controlled trial and molecular mechanism study[J]. Hum Reprod, 2020, 35(6): 1306-1318. DOI: 10.1093/humrep/deaa086.
|
[12] |
|
[13] |
Xu DF, Liu PP, Fan L, et al. GnRH antagonist weakens endometrial stromal cells growth ability by decreasing c-kit receptor expression[J]. Reprod Biol Endocrinol, 2022, 20(1): 29. DOI: 10.1186/s12958-021-00886-y.
|
[14] |
Ashary N, Laheri S, Modi D. Homeobox genes in endometrium: from development to decidualization[J]. Int J Devel Biol, 2020, 64(1-2-3): 227-237. DOI: 10.1387/ijdb.190120dm.
|
[15] |
许定飞. GnRH拮抗剂方案影响人子宫内膜容受性的作用机制研究[D]. 南昌:南昌大学,2022.
|
[16] |
Lv J, Shan X, Yang H, et al. Single cell proteomics profiling reveals that embryo-secreted TNF-α plays a critical role during embryo implantation to the endometrium[J]. Reproduct Sci, 2022, 29(5): 1608-1617. DOI: 10.1007/s43032-021-00833-7.
|
[17] |
Xu B, Zhou M, Wang J, et al. Increased AIF-1-mediated TNF-alpha expression during implantation phase in IVF cycles with GnRH antagonist protocol[J]. Hum Reprod, 2018, 33(7): 1270-1280. DOI: 10.1093/humrep/dey119.
|
[18] |
Wang J, Huang C, Jiang R, et al. Decreased endometrial IL-10 impairs endometrial receptivity by downregulating HOXA10 expression in women with adenomyosis[J]. Biomed Res Int, 2018, 2018: 2549789. DOI: 10.1155/2018/2549789.
|
[19] |
Zhu X, Niu Z, Ye Y, et al. Endometrium cytokine profiles are altered following ovarian stimulation but almost not in subsequent hormone replacement cycles[J]. Cytokine, 2019, 114: 6-10. DOI: 10.1016/j.cyto.2018.11.002.
|
[20] |
Zhu L, Aly M, Wang H, et al. Increased natural killer cell subsets with inhibitory cytokines and inhibitory surface receptors in patients with recurrent miscarriage and decreased or normal subsets in kidney transplant recipients late post-transplant[J]. Clin Exp Immunol, 2018, 193(2): 241-254. DOI: 10.1111/cei.13142.
|
[21] |
Xu B, Wang J, Xia L, et al. Increased uterine NK cell numbers and perforin expression during the implantation phase in IVF cycles with GnRH antagonist protocol[J]. Sci Rep, 2017, 7: 39912. DOI: 10.1038/srep39912.
|
[22] |
Sauerbrun-Cutler M, Huber WJ, Krueger PM, et al. Do endometrial natural killer and regulatory T cells differ in infertile and clinical pregnancy patients? An analysis in patients undergoing frozen embryo transfer cycles [J]. Am J Reproduct Immunol, 2021, 85(6): e13393. DOI: 10.1111/aji.13393.
|
[23] |
|
[24] |
Liu H, Zhang J, Wang B, et al. Effect of endometrial thickness on ectopic pregnancy in frozen embryo transfer cycles: an analysis including 17,244 pregnancy cycles[J]. Fertil Steril, 2020, 113(1): 131-139. DOI: 10.1016/j.fertnstert.2019.09.003.
|
[25] |
马丽,刘梦雪. 子宫内膜厚度对体外受精胚胎移植治疗结局的影响探讨?[J]. 中国保健营养,2021, 31(1): 41.
|
[26] |
Zhang J, Sun Y, Xu Y, et al. Effect of endometrium thickness on clinical outcomes in luteal phase short-acting GnRH-a long protocol and GnRH-Ant protocol[J]. Front Endocrinol (Lausanne), 2021, 12: 578783.
|
[27] |
Lu Y, Niu Y, Wang Y, et al. Optimal candidates to do fresh embryo transfer in those using oral contraceptive pretreatment in IVF cycles[J]. Front Physiol, 2021, 12. DOI: 10.3389/fphys.2021.576917.
|
[28] |
|
[29] |
Masrour MJ, Yoonesi L, Aerabsheibani H. The effect of endometrial thickness and endometrial blood flow on pregnancy outcome in intrauterine insemination cycles[J]. J Family Med Prim Care, 2019, 8(9): 2845-2849. DOI: 10.4103/jfmpc.jfmpc_212_19.
|
[30] |
Yu J, Li B, Li H, et al. Comparison of uterine, endometrial and subendometrial blood flows in predicting pregnancy outcomes between fresh and frozen-thawed embryo transfer after GnRH antagonist protocol: a retrospective cohort study[J]. J Obstet Gynaecol, 2023, 43(1): 2195937. DOI: 10.1080/01443615.2023.2195937.
|