切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2024, Vol. 20 ›› Issue (03) : 260 -265. doi: 10.3877/cma.j.issn.1673-5250.2024.03.003

生殖医学专辑

体外受精周期中单原核胚胎的临床研究现状
高青卓1, 康宜凡1, 王治鸿2,()   
  1. 1. 山西医科大学第一医院妇产科,太原 030001
    2. 山西医科大学第一医院生殖医学中心,太原 030001
  • 收稿日期:2023-11-30 修回日期:2024-04-05 出版日期:2024-06-01
  • 通信作者: 王治鸿

Current research status of clinical studies on monopronuclear embryos in in vitro fertilization cycles

Qingzhuo Gao1, Yifan Kang1, Zhihong Wang2,()   

  1. 1. Department of Obstetrics and Gynecology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
    2. Department of Reproductive Center, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2023-11-30 Revised:2024-04-05 Published:2024-06-01
  • Corresponding author: Zhihong Wang
  • Supported by:
    Key Research and Development Project of Science and Technology Department of Shanxi Province(201903D321163)
引用本文:

高青卓, 康宜凡, 王治鸿. 体外受精周期中单原核胚胎的临床研究现状[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 260-265.

Qingzhuo Gao, Yifan Kang, Zhihong Wang. Current research status of clinical studies on monopronuclear embryos in in vitro fertilization cycles[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 260-265.

单原核(mononuclear embryo)胚胎是指受精后16~18 h仅观察到胚胎内存在1个原核(1PN),1PN在体外受精-胚胎移植(IVF-ET)中并不罕见。由于既往发现1PN胚胎染色体异常率高,移植后,母儿临床结局不理想等原因,临床通常不采用1PN胚胎进行移植。近年随着囊胚培养和胚胎植入前遗传学检测(PGT)技术的发展,1PN胚胎越来越受到辅助生殖技术领域的关注。研究证明,部分1PN胚胎染色体正常,并且移植后,仍然可能分娩健康婴儿,故对其临床价值值得进一步探讨。笔者拟就国内外关于IVF-ET中1PN胚胎的最新研究进展现状进行阐述,重点关注1PN形成机制、1PN胚胎的染色体构成及分析,以及1PN胚胎临床结局与临床价值,旨在为IPN胚胎临床决策提供参考。

Monopronuclear embryos refer to embryos in which only one pronucleus (1PN) is observed between 16 to 18 hours after fertilization, which is not uncommon in in vitro fertilization-embryo transfer (IVF-ET). Due to the high rate of chromosomal abnormalities in 1PN embryos and unsatisfactory clinical pregnancy outcomes after IVF-ET, transplantation of 1PN embryos is usually not performed. In recent years, with the development of blastocyst culture and preimplantation genetic testing (PGT) technology, 1PN embryos have attracted more and more attention in the field of assisted reproductive technology experts. Studies have demonstrated that some 1PN embryos chromosomes are normal and may still deliver healthy babies after IVF-ET, so their clinical values deserve further exploration. The author intends to elaborate on the latest research progress on the mechanism of 1PN, and chromosomal composition, clinical outcome and clinical value after IVF-ET of 1PN embryos, aiming to provide ideas for the rational clinical application of 1PN embryos.

图1 1PN胚胎染色体构成图注:1PN为1个原核,2PB为2个极体,1PB为1个极体,pPNBD为成熟前原核核膜破裂
[1]
De los Santos MJ, Apter S, et al. Revised guidelines for good practice in IVF laboratories (2015)[J]. Hum Reprod, 2016, 31(4): 685-686. DOI: 10.1093/humrep/dew016.
[2]
Bradley CK, Traversa MV, Hobson N, et al. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance[J]. Reprod Biomed Online, 2017, 34(6): 567-574. DOI: 10.1016/j.rbmo.2017.03.013.
[3]
Rosenbusch B. The chromosomal constitution of embryos arising from monopronuclear oocytes in programmes of assisted reproduction[J]. Int J of Reproduct Med, 2014, 2014: 418198. DOI: 10.1155/2014/418198.
[4]
Fabozzi G, Rega E, Starita MF, et al. The influence of clinical and laboratory factors on the formation of monopronucleated zygotes after intracytoplasmic sperm injection (ICSI)[J]. Zygote (Cambridge, England), 2019, 27(2): 64-68. DOI: 10.1017/S0967199418000473.
[5]
Soler N, Bautista-Llàcer R, Escrich L, et al. Rescuing monopronucleated-derived human blastocysts: a model to study chromosomal topography and fingerprinting[J]. Fertil Steril, 2021, 116(2): 583-596. DOI: 10.1016/j.fertnstert.2021.03.038.
[6]
Jose de Carli G, Campos Pereira T. On human parthenogenesis[J]. Med Hypotheses, 2017, 106: 57-60. DOI: 10.1016/j.mehy.2017.07.008.
[7]
Wasserzug-Pash P, Klutstein M. Epigenetic aging in oocytes[J]. Aging (Albany NY), 2023, 15(15):7334-7335. DOI: 10.18632/aging.204976.
[8]
Cardona Barberán A, Boel A, Vanden Meerschaut F, et al. Diagnosis and treatment of male infertility-related fertilization failure[J]. J Clin Med, 2020, 9(12): 3899. DOI: 10.3390/jcm9123899.
[9]
Asa E, Tabatabaee R, Farrokhi A, et al. Relationship between meiotic spindles visualization and intracytoplasmic sperm injection outcomes in human oocytes[J]. Anat Cell Biol, 2017, 50(1): 26-32. DOI: 10.5115/acb.2017.50.1.26.
[10]
Fishman EL, Jo K, Nguyen QPH, et al. A novel atypical sperm centriole is functional during human fertilization[J]. Nat Commun, 2018, 9(1): 2210. DOI: 10.1038/s41467-018-04678-8.
[11]
Liao QY, Huang B, Zhang SJ, et al. Influence of different quality sperm on early embryo morphokinetic parameters and cleavage patterns: a retrospective time-lapse study[J]. Curr Med Sci, 2020, 40(5): 960-967. DOI: 10.1007/s11596-020-2272-3.
[12]
Nabeel-Shah S, Garg J, Ashraf K, et al. Multilevel interrogation of H3.3 reveals a primordial role in transcription regulation[J]. Epigenet Chrom, 2023, 16(1): 10. DOI: 10.1186/s13072-023-00484-9.
[13]
Smith R, Pickering SJ, Kopakaki A, et al. HIRA contributes to zygote formation in mice and is implicated in human 1PN zygote phenotype[J]. Reproduction, 2021, 161(6): 697-707. DOI: 10.1530/REP-20-0636.
[14]
Azevedo AR, Pinho MJ, Silva J, et al. Molecular cytogenetics of human single pronucleated zygotes[J]. Reproduct Sci, 2014, 21(12): 1472-1482. DOI: 10.1177/1933719114530185.
[15]
Hondo S, Arichi A, Muramatsu H, et al. Clinical outcomes of transfer of frozen and thawed single blastocysts derived from nonpronuclear and monopronuclear zygotes[J]. Reproduct Med Biol, 2019, 18(3): 278-283. DOI: 10.1002/rmb2.12275.
[16]
Wei X, Enatsu N, Furuhashi K, et al. Developmental trajectory of monopronucleated zygotes after in vitro fertilization when they include both male and female genomes[J]. Fertil Steril, 2022, 117(1): 213-220. DOI: 10.1016/j.fertnstert.2021.08.036.
[17]
Kai Y, Moriwaki H, Yumoto K, et al. Assessment of developmental potential of human single pronucleated zygotes derived from conventional in vitro fertilization[J]. J Assist Reproduct Genet, 2018, 35(8): 1377-1384. DOI: 10.1007/s10815-018-1241-2.
[18]
Fu L, Chu D, Zhou W, et al. Strictly selected mono- and non-pronuclear blastocysts could result in appreciable clinical outcomes in IVF cycles[J]. Hum Fertil, 2020, 1-8. DOI: 10.1080/14647273.2020.1815243.
[19]
Lagalla C, Tarozzi N, Sciajno R, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts[J]. Reproduct Biomed Online, 2017, 34(2): 137-146. DOI: 10.1016/j.rbmo.2016.11.008.
[20]
Fragouli E, Munne S, Wells D. The cytogenetic constitution of human blastocysts: insights from comprehensive chromosome screening strategies[J]. Hum Reproduct Updat, 2019, 25(1): 15-33. DOI: 10.1093/humupd/dmy036.
[21]
Yin BL, Hao HY, Zhang YN, et al. Good quality blastocyst from non-/mono-pronuclear zygote may be used for transfer during IVF[J]. Syst Biol Reproduct Medi, 2016, 62(2): 139-145. DOI: 10.3109/19396368.2015.1137993.
[22]
Xie PY, Tang Y, Hu L, et al. Identification of biparental and diploid blastocysts from monopronuclear zygotes with the use of a single-nucleotide polymorphism array[J]. Fertil Steril, 2018, 110(3): 545-554.e5.DOI:10.1016/j.fertnstert.2018.04.034.
[23]
Hirata K, Goto S, Izumi Y, et al. Chromosome analysis of blastocysts derived from single pronuclear zygotes by array CGH and clinical outcomes by the transfer of single pronuclear zygotes[J]. J Assist Reproduct Genet, 2020, 37(7): 1645-1652. DOI: 10.1007/s10815-020-01800-y.
[24]
Mateo S, Vidal F, Parriego M, et al. Could monopronucleated ICSI zygotes be considered for transfer? Analysis through time-lapse monitoring and PGS[J]. J Assist Reprod Genet, 2017, 34(7): 905-911. DOI: 10.1007/s10815-017-0937-z.
[25]
Mateo S, Vidal F, Carrasco B, et al. Morphokinetics and in vitro developmental potential of monopronucleated ICSI zygotes until the blastocyst stage[J]. Zygote, 2020, 28(3): 217-222. DOI: 10.1017/S0967199420000027.
[26]
Si J, Zhu X, Lyu Q, et al. Obstetrical and neonatal outcomes after transfer of cleavage-stage and blastocyst-stage embryos derived from monopronuclear zygotes: a retrospective cohort study[J]. Fertil Steril, 2019, 112(3): 527-533. DOI: 10.1016/j.fertnstert.2019.04.045.
[27]
Wei YL, Zhu GJ, Ren XL, et al. Developmental potential and clinical value of embryos with abnormal cleavage rate[J]. Curr Med Sci, 2019, 39(1): 118-121. DOI: 10.1007/s11596-019-2008-4.
[28]
Li M, Dang Y, Wang Y, et al. Value of transferring embryos derived from monopronucleated (1PN) zygotes at the time of fertilization assessment[J]. Zygote, 2020, 28(3): 241-246. DOI: 10.1017/S096719942000009X.
[29]
Li M, Huang J, Zhuang X, et al. Obstetric and neonatal outcomes after the transfer of vitrified-warmed blastocysts developing from nonpronuclear and monopronuclear zygotes[J]. Fertil Steril, 2021, 115(1): 110-117. DOI: 10.1016/j.fertnstert.2020.07.019.
[30]
Destouni A, Dimitriadou E, Masset H, et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M[J]. Hum Reproduct, 2018, 33(12): 2302-2311. DOI: 10.1093/humrep/dey325.
[31]
Capalbo A, Treff N, Cimadomo D, et al. Abnormally fertilized oocytes can result in healthy live births: improved genetic technologies for preimplantation genetic testing can be used to rescue viable embryos in in vitro fertilization cycles[J]. Fertil Steril, 2017, 108(6): 1007.e3-1015.e3. DOI: 10.1016/j.fertnstert.2017.08.004.
[32]
Araki E, Itoi F, Honnma H, et al. Correlation between the pronucleus size and the potential for human single pronucleus zygotes to develop into blastocysts∶1PN zygotes with large pronuclei can expect an embryo development to the blastocyst stage that is similar to the development of 2PN zygotes[J]. J Assist Reproduct Genet, 2018, 35(5): 817-823. DOI: 10.1007/s10815-018-1137-1.
[33]
Fujimine-Sato A, Kuno T, Higashi K, et al. Exploration of the cytoplasmic function of abnormally fertilized embryos via novel pronuclear-stage cytoplasmic transfer[J]. Int J Mol Sci, 2021, 22(16): 8765. DOI: 10.3390/ijms22168765.
[1] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[2] 冯晨, 郑英, 武童, 李敬, 夏铭笛, 鲁娟娟, 党玉洁. 环状染色体携带者助孕结局分析[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 58-64.
[3] 王丽, 王月莺, 周芬, 郭宇堃, 魏丽娜. 促性腺激素释放激素拮抗剂对子宫内膜容受性影响的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 629-635.
[4] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[5] 魏权, 张燊, 陈慧佳, 邹姮, 胡丽娜. 女性生殖道微生物群与辅助生殖技术相关性研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 151-155.
[6] 张璐, 杨惠娟, 刘凯波. 2015—2021年北京市辅助生殖技术助孕活产及高龄孕母占比与不良妊娠结局变化趋势[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 46-53.
[7] 陈雨婷, 杨烨, 谢奇君, 凌秀凤. 女性不孕不育相关疾病患者的生殖道微生物组成异常研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 615-620.
[8] 庄虔莹, 李丽, 王文静, 康晓迪, 王素萍. 乙型肝炎病毒对体外受精-胚胎移植患者妊娠结局的影响[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 426-430.
[9] 王晓利, 李琦, 李春风, 王璟琦, 管晓东. 保留睾丸动脉的腹腔镜精索内静脉高位结扎术对精索静脉曲张致不育的疗效分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 261-264.
[10] 陈利军, 杨晓健, 张炎, 陆敏华, 张浩. 先天性巨结肠术后逆行射精一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(04): 352-353.
[11] 滕敏, 何萍, 黄国兰, 覃捷, 黄泰帅. 定向差异性护理干预对不孕不育症患者社交状态、认知状态及心理弹性的影响[J]. 中华临床医师杂志(电子版), 2022, 16(03): 268-273.
[12] 胡采宏, 张卫社. 辅助生殖技术与早期流产[J]. 中华产科急救电子杂志, 2024, 13(02): 69-72.
[13] 卫星, 孙路明. 辅助生殖技术与胎儿生长障碍[J]. 中华产科急救电子杂志, 2024, 13(02): 88-92.
[14] 李任远, 梁桂宁, 于馨洋, 张莹. 基因检测及胚胎植入前单基因遗传学检测在优生优育中的作用[J]. 中华产科急救电子杂志, 2024, 13(02): 117-120.
[15] 赵玉, 杨继鹏, 赵晓丽, 耿强, 欧阳斌, 夏天. 基于数据挖掘技术探讨针刺治疗男性不育症的选穴循经规律[J]. 中华针灸电子杂志, 2023, 12(01): 32-36.
阅读次数
全文


摘要