切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (05) : 616 -620. doi: 10.3877/cma.j.issn.1673-5250.2023.05.017

综述

细胞外囊泡对胚胎着床影响的研究进展
代雯荣, 赵丽娟, 李智慧()   
  1. 濮阳市人民医院生殖医学中心,濮阳 457000
    濮阳市人民医院产科,濮阳 457000
  • 收稿日期:2023-04-20 修回日期:2023-09-08 出版日期:2023-10-01
  • 通信作者: 李智慧

Research progress of influence of extracellular vesicles on embryo implantation

Wenrong Dai, Lijuan Zhao, Zhihui Li()   

  1. Center of Reproductive Medicine, Puyang People′s Hospital, Puyang 457000, Henan Province, China
    Department of Obstetrics, Puyang People′s Hospital, Puyang 457000, Henan Province, China
  • Received:2023-04-20 Revised:2023-09-08 Published:2023-10-01
  • Corresponding author: Zhihui Li
  • Supported by:
    Henan Provincial Medical Science and Technology Key Project Jointly Constructed by Provincial and Ministerial Departments of Henan Provincial Health Commission(SBGJ202102218)
引用本文:

代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.

Wenrong Dai, Lijuan Zhao, Zhihui Li. Research progress of influence of extracellular vesicles on embryo implantation[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 616-620.

细胞外囊泡(EV)由多种细胞分泌,携带多种生物活性物质,如脂质、蛋白质、DNA、mRNA及非编码RNA(ncRNA)等,并可作为细胞与细胞间通讯物质传输的载体。EV可在女性生殖过程中介导细胞间交流,子宫内膜、胚胎、输卵管及精液来源EV,可对胚胎着床产生不同作用。笔者拟就子宫内膜、胚胎、输卵管及精液来源EV对胚胎着床影响的最新研究进展进行阐述,旨在为EV影响胚胎着床的具体调控机制研究提供参考。

Extracellular vesicle (EV) is secreted by a variety of cells, which carry a variety of bioactive substances, such as lipids, proteins, DNA, mRNA and noncoding RNA (ncRNA), and can be used as the carrier of communication between cells. EV can mediate cell-to-cell communication in the female reproductive process, and EV from endometrium, embryo, fallopian tube and semen have different effects on embryo implantation. In this paper, the authors mainly elaborate on recent research progress of influence of EV from endometrium, embryo, fallopian tube, semen on embryo implantation, and to provide reference for further research on the specific regulatory mechanism of EV in embryo implantation.

[1]
Zhang C, Chong X, Jiang F, et al. Plasma extracellular vesicle derived protein profile predicting and monitoring immunotherapeutic outcomes of gastric cancer[J]. J Extracell Vesicles, 2022, 11(4): e12209. DOI: 10.1002/jev2.12209.
[2]
Colangelo T, Panelli P, Mazzarelli F, et al. Extracellular vesicle microRNAs contribute to Notch signaling pathway in T-cell acute lymphoblastic leukemia[J]. Mol Cancer, 2022, 21(1): 226. DOI: 10.1186/s12943-022-01698-3.
[3]
Li Y, Wen J, Liang D, et al. Extracellular vesicles and their associated miRNAs as potential biomarkers in intracranial aneurysm[J]. Front Mol Biosci, 2022, 9: 785314. DOI: 10.3389/fmolb.2022.785314.
[4]
Wang X, Zhang H, Yang H, et al. Cell-derived exosomes as promising carriers for drug delivery and targeted therapy[J]. Curr Cancer Drug Targets, 2018, 18(4): 347-354. DOI: 10.2174/1568009617666170710120311.
[5]
Kurian NK, Modi D. Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy[J]. J Assist Reprod Genet, 2019, 36(2): 189-198. DOI: 10.1007/s10815-018-1343-x.
[6]
Rai A, Poh QH, Fatmous M, et al. Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle[J]. Proteomics, 2021, 21(13-14): e2000211. DOI: 10.1002/pmic.202000211.
[7]
Greening DW, Nguyen HP, Elgass K, et al. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions[J]. Biol Reprod, 2016, 94(2): 38. DOI: 10.1095/biolreprod.115.134890.
[8]
Cuman C, Van Sinderen M, Gantier MP, et al. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion[J]. EBioMedicine, 2015, 2(10): 1528-1535. DOI: 10.1016/j.ebiom.2015.09.003.
[9]
Desrochers LM, Bordeleau F, Reinhart-King CA, et al. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation[J]. Nat Commun, 2016, 7: 11958. DOI: 10.1038/ncomms11958.
[10]
Rodriguez-Caro H, Dragovic R, Shen M, et al. In vitro decidualisation of human endometrial stromal cells is enhanced by seminal fluid extracellular vesicles[J]. J Extracell Vesicles, 2019, 8(1): 1565262. DOI: 10.1080/20013078.2019.1565262.
[11]
Conzelmann C, Groβ R, Zou M, et al. Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection[J]. J Extracell Vesicles, 2020, 9(1): 1808281. DOI: 10.1080/20013078.2020.1808281.
[12]
Campos-Silva C, Suárez H, Jara-Acevedo R, et al. High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry[J]. Sci Rep, 2019, 9(1): 2042. DOI: 10.1038/s41598-019-38516-8.
[13]
Martinez RM, Liang L, Racowsky C, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes[J]. Sci Rep, 2018, 8(1): 17036. DOI: 10.1038/s41598-018-35379-3.
[14]
Gatti M, Beretti F, Zavatti M, et al. Amniotic fluid stem cell-derived extracellular vesicles counteract steroid-induced osteoporosis in vitro[J]. Int J Mol Sci, 2020, 22(1): 38. DOI: 10.3390/ijms22010038.
[15]
Palaiologou E, Etter O, Goggin P, et al. Human placental villi contain stromal macrovesicles associated with networks of stellate cells[J]. J Anat, 2020, 236(1): 132-141. DOI: 10.1111/joa.13082.
[16]
Cufaro MC, Pieragostino D, Lanuti P, et al. Extracellular vesicles and their potential use in monitoring cancer progression and therapy: the contribution of proteomics[J]. J Oncol, 2019, 2019: 1639854. DOI: 10.1155/2019/1639854.
[17]
Nguyen MA, Karunakaran D, Geoffrion M, et al. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration[J]. Arterioscler Thromb Vasc Biol, 2018, 38(1): 49-63. DOI: 10.1161/ATVBAHA.117.309795.
[18]
Evans J, Rai A, Nguyen HPT, et al. Human endometrial extracellular vesicles functionally prepare human trophectoderm model for implantation: understanding bidirectional maternal-embryo communication[J]. Proteomics, 2019, 19(23): e1800423. DOI: 10.1002/pmic.201800423.
[19]
Blázquez R, Sánchez-Margallo FM, Álvarez V, et al. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates[J]. PLoS One, 2018, 13(4): e0196080. DOI: 10.1371/journal.pone.0196080.
[20]
Thuault S, Ghossoub R, David G, et al. A journey on extracellular vesicles for matrix metalloproteinases: a mechanistic perspective[J]. Front Cell Dev Biol, 2022, 10: 886381. DOI: 10.3389/fcell.2022.886381.
[21]
Hugendieck G, Lettau M, Andreas S, et al. Chemotherapy-induced release of ADAM17 bearing EV as a potential resistance mechanism in ovarian cancer[J]. J Extracell Vesicles, 2023, 12(7): e12338. DOI: 10.1002/jev2.12338.
[22]
Cook L, Sengelmann M, Winkler B, et al. ADAM8-dependent extracellular signaling in the tumor microenvironment involves regulated release of lipocalin 2 and MMP-9[J]. Int J Mol Sci, 2022, 23(4): 1976. DOI: 10.3390/ijms23041976.
[23]
Latifi Z, Fattahi A, Ranjbaran A, et al. Potential roles of metalloproteinases of endometrium-derived exosomes in embryo-maternal crosstalk during implantation[J]. J Cell Physiol, 2018, 233(6): 4530-4545. DOI: 10.1002/jcp.26259.
[24]
Ng YH, Rome S, Jalabert A, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation[J]. PLoS One, 2013, 8(3): e58502. DOI: 10.1371/journal.pone.0058502.
[25]
Vilella F, Moreno-Moya JM, Balaguer N, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome[J]. Development, 2015, 142(18): 3210-3221. DOI: 10.1242/dev.124289.
[26]
Sternberg AK, Buck VU, Classen-Linke I, et al. How mechanical forces change the human endometrium during the menstrual cycle in preparation for embryo implantation[J]. Cells, 2021, 10(8): 2008. DOI: 10.3390/cells10082008.
[27]
Massimiani M, Lacconi V, La Civita F, et al. Molecular signaling regulating endometrium-blastocyst crosstalk[J]. Int J Mol Sci, 2019, 21(1): 23. DOI: 10.3390/ijms21010023.
[28]
Giacomini E, Alleva E, Fornelli G, et al. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface[J]. Clin Exp Immunol, 2019, 198(1): 15-23. DOI: 10.1111/cei.13304.
[29]
Dissanayake K, Nõmm M, L?ttekivi F, et al. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers[J]. Theriogenology, 2020, 149: 104-116. DOI: 10.1016/j.theriogenology.2020.03.008.
[30]
Szuszkiewicz J, Myszczynski K, Reliszko ZP, et al. Early steps of embryo implantation are regulated by exchange of extracellular vesicles between the embryo and the endometrium[J]. FASEB J, 2022, 36(8): e22450. DOI: 10.1096/fj.202200677R.
[31]
Bidarimath M, Khalaj K, Kridli RT, et al. Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus-endometrial cross-talk[J]. Sci Rep, 2017, 7: 40476. DOI: 10.1038/srep40476.
[32]
Wu HM, Chen LH, Hsu LT, et al. Immune tolerance of embryo implantation and pregnancy: the role of human decidual stromal cell- and embryonic-derived extracellular vesicles[J]. Int J Mol Sci, 2022, 23(21): 13382. DOI: 10.3390/ijms232113382.
[33]
Saint-Dizier M, Schoen J, Chen S, et al. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions[J]. Int J Mol Sci, 2019, 21(1): 223. DOI: 10.3390/ijms21010223.
[34]
Aoki S, Inoue Y, Shinozawa A, et al. miR-17-5p in bovine oviductal fluid affects embryo development[J]. Mol Cell Endocrinol, 2022, 551: 111651. DOI: 10.1016/j.mce.2022.111651.
[35]
Sidrat T, Khan AA, Joo MD, et al. Bovine oviduct epithelial cell-derived culture media and exosomes improve mitochondrial health by restoring metabolic flux during pre-implantation development[J]. Int J Mol Sci, 2020, 21(20): 7589. DOI: 10.3390/ijms21207589.
[36]
George AF, Jang KS, Nyegaard M, et al. Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling[J]. Hum Reprod, 2020, 35(3): 617-640. DOI: 10.1093/humrep/deaa015.
[37]
Crawford G, Ray A, Gudi A, et al. The role of seminal plasma for improved outcomes during in vitro fertilization treatment: review of the literature and Meta-analysis[J]. Hum Reprod Update, 2015, 21(2): 275-284. DOI: 10.1093/humupd/dmu052.
[38]
Goss DM, Vasilescu SA, Sacks G, et al. Microfluidics facilitating the use of small extracellular vesicles in innovative approaches to male infertility[J]. Nat Rev Urol, 2023, 20(2): 66-95. DOI: 10.1038/s41585-022-00660-8.
[39]
Yang C, Guo WB, Zhang WS, et al. Comprehensive proteomics analysis of exosomes derived from human seminal plasma[J]. Andrology, 2017, 5(5): 1007-1015. DOI: 10.1111/andr.12412.
[40]
Bai R, Latifi Z, Kusama K, et al. Induction of immune-related gene expression by seminal exosomes in the porcine endometrium[J]. Biochem Biophys Res Commun, 2018, 495(1): 1094-1101. DOI: 10.1016/j.bbrc.2017.11.100.
[41]
Paktinat S, Hashemi SM, Ghaffari Novin M, et al. Seminal exosomes induce interleukin-6 and interleukin-8 secretion by human endometrial stromal cells[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 235: 71-76. DOI: 10.1016/j.ejogrb.2019.02.010.
[42]
Li L, Liu Y, Feng T, et al. The AHNAK induces increased IL-6 production in CD4 T cells and serves as a potential diagnostic biomarker for recurrent pregnancy loss[J]. Clin Exp Immunol, 2022, 209(3): 291-304. DOI: 10.1093/cei/uxac067.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[3] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[4] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[7] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[8] 甘志新, 胡雍军, 肖晶, 胡明冬. 降钙素原在脓毒血症与肺部感染中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 663-666.
[9] 胡启明, 鄢潇, 尤志学, 黄骁昊. 经瘢痕处单孔腹腔镜下切除多病灶腹壁子宫内膜异位症[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 314-317.
[10] 张蕾, 彭超, 周应芳. 直肠阴道隔子宫内膜异位症腹腔镜手术技巧[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 257-261.
[11] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[12] 芦煜, 李振宇, 吴承东, 周仲伍. 肛周子宫内膜异位症一例报告[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 431-434.
[13] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[14] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[15] 张晓青, 唐雯. 基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 213-218.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?