切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (05) : 616 -620. doi: 10.3877/cma.j.issn.1673-5250.2023.05.017

综述

细胞外囊泡对胚胎着床影响的研究进展
代雯荣, 赵丽娟, 李智慧()   
  1. 濮阳市人民医院生殖医学中心,濮阳 457000
    濮阳市人民医院产科,濮阳 457000
  • 收稿日期:2023-04-20 修回日期:2023-09-08 出版日期:2023-10-01
  • 通信作者: 李智慧

Research progress of influence of extracellular vesicles on embryo implantation

Wenrong Dai, Lijuan Zhao, Zhihui Li()   

  1. Center of Reproductive Medicine, Puyang People′s Hospital, Puyang 457000, Henan Province, China
    Department of Obstetrics, Puyang People′s Hospital, Puyang 457000, Henan Province, China
  • Received:2023-04-20 Revised:2023-09-08 Published:2023-10-01
  • Corresponding author: Zhihui Li
  • Supported by:
    Henan Provincial Medical Science and Technology Key Project Jointly Constructed by Provincial and Ministerial Departments of Henan Provincial Health Commission(SBGJ202102218)
引用本文:

代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.

Wenrong Dai, Lijuan Zhao, Zhihui Li. Research progress of influence of extracellular vesicles on embryo implantation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 616-620.

细胞外囊泡(EV)由多种细胞分泌,携带多种生物活性物质,如脂质、蛋白质、DNA、mRNA及非编码RNA(ncRNA)等,并可作为细胞与细胞间通讯物质传输的载体。EV可在女性生殖过程中介导细胞间交流,子宫内膜、胚胎、输卵管及精液来源EV,可对胚胎着床产生不同作用。笔者拟就子宫内膜、胚胎、输卵管及精液来源EV对胚胎着床影响的最新研究进展进行阐述,旨在为EV影响胚胎着床的具体调控机制研究提供参考。

Extracellular vesicle (EV) is secreted by a variety of cells, which carry a variety of bioactive substances, such as lipids, proteins, DNA, mRNA and noncoding RNA (ncRNA), and can be used as the carrier of communication between cells. EV can mediate cell-to-cell communication in the female reproductive process, and EV from endometrium, embryo, fallopian tube and semen have different effects on embryo implantation. In this paper, the authors mainly elaborate on recent research progress of influence of EV from endometrium, embryo, fallopian tube, semen on embryo implantation, and to provide reference for further research on the specific regulatory mechanism of EV in embryo implantation.

[1]
Zhang C, Chong X, Jiang F, et al. Plasma extracellular vesicle derived protein profile predicting and monitoring immunotherapeutic outcomes of gastric cancer[J]. J Extracell Vesicles, 2022, 11(4): e12209. DOI: 10.1002/jev2.12209.
[2]
Colangelo T, Panelli P, Mazzarelli F, et al. Extracellular vesicle microRNAs contribute to Notch signaling pathway in T-cell acute lymphoblastic leukemia[J]. Mol Cancer, 2022, 21(1): 226. DOI: 10.1186/s12943-022-01698-3.
[3]
Li Y, Wen J, Liang D, et al. Extracellular vesicles and their associated miRNAs as potential biomarkers in intracranial aneurysm[J]. Front Mol Biosci, 2022, 9: 785314. DOI: 10.3389/fmolb.2022.785314.
[4]
Wang X, Zhang H, Yang H, et al. Cell-derived exosomes as promising carriers for drug delivery and targeted therapy[J]. Curr Cancer Drug Targets, 2018, 18(4): 347-354. DOI: 10.2174/1568009617666170710120311.
[5]
Kurian NK, Modi D. Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy[J]. J Assist Reprod Genet, 2019, 36(2): 189-198. DOI: 10.1007/s10815-018-1343-x.
[6]
Rai A, Poh QH, Fatmous M, et al. Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle[J]. Proteomics, 2021, 21(13-14): e2000211. DOI: 10.1002/pmic.202000211.
[7]
Greening DW, Nguyen HP, Elgass K, et al. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions[J]. Biol Reprod, 2016, 94(2): 38. DOI: 10.1095/biolreprod.115.134890.
[8]
Cuman C, Van Sinderen M, Gantier MP, et al. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion[J]. EBioMedicine, 2015, 2(10): 1528-1535. DOI: 10.1016/j.ebiom.2015.09.003.
[9]
Desrochers LM, Bordeleau F, Reinhart-King CA, et al. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation[J]. Nat Commun, 2016, 7: 11958. DOI: 10.1038/ncomms11958.
[10]
Rodriguez-Caro H, Dragovic R, Shen M, et al. In vitro decidualisation of human endometrial stromal cells is enhanced by seminal fluid extracellular vesicles[J]. J Extracell Vesicles, 2019, 8(1): 1565262. DOI: 10.1080/20013078.2019.1565262.
[11]
Conzelmann C, Groβ R, Zou M, et al. Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection[J]. J Extracell Vesicles, 2020, 9(1): 1808281. DOI: 10.1080/20013078.2020.1808281.
[12]
Campos-Silva C, Suárez H, Jara-Acevedo R, et al. High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry[J]. Sci Rep, 2019, 9(1): 2042. DOI: 10.1038/s41598-019-38516-8.
[13]
Martinez RM, Liang L, Racowsky C, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes[J]. Sci Rep, 2018, 8(1): 17036. DOI: 10.1038/s41598-018-35379-3.
[14]
Gatti M, Beretti F, Zavatti M, et al. Amniotic fluid stem cell-derived extracellular vesicles counteract steroid-induced osteoporosis in vitro[J]. Int J Mol Sci, 2020, 22(1): 38. DOI: 10.3390/ijms22010038.
[15]
Palaiologou E, Etter O, Goggin P, et al. Human placental villi contain stromal macrovesicles associated with networks of stellate cells[J]. J Anat, 2020, 236(1): 132-141. DOI: 10.1111/joa.13082.
[16]
Cufaro MC, Pieragostino D, Lanuti P, et al. Extracellular vesicles and their potential use in monitoring cancer progression and therapy: the contribution of proteomics[J]. J Oncol, 2019, 2019: 1639854. DOI: 10.1155/2019/1639854.
[17]
Nguyen MA, Karunakaran D, Geoffrion M, et al. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration[J]. Arterioscler Thromb Vasc Biol, 2018, 38(1): 49-63. DOI: 10.1161/ATVBAHA.117.309795.
[18]
Evans J, Rai A, Nguyen HPT, et al. Human endometrial extracellular vesicles functionally prepare human trophectoderm model for implantation: understanding bidirectional maternal-embryo communication[J]. Proteomics, 2019, 19(23): e1800423. DOI: 10.1002/pmic.201800423.
[19]
Blázquez R, Sánchez-Margallo FM, Álvarez V, et al. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates[J]. PLoS One, 2018, 13(4): e0196080. DOI: 10.1371/journal.pone.0196080.
[20]
Thuault S, Ghossoub R, David G, et al. A journey on extracellular vesicles for matrix metalloproteinases: a mechanistic perspective[J]. Front Cell Dev Biol, 2022, 10: 886381. DOI: 10.3389/fcell.2022.886381.
[21]
Hugendieck G, Lettau M, Andreas S, et al. Chemotherapy-induced release of ADAM17 bearing EV as a potential resistance mechanism in ovarian cancer[J]. J Extracell Vesicles, 2023, 12(7): e12338. DOI: 10.1002/jev2.12338.
[22]
Cook L, Sengelmann M, Winkler B, et al. ADAM8-dependent extracellular signaling in the tumor microenvironment involves regulated release of lipocalin 2 and MMP-9[J]. Int J Mol Sci, 2022, 23(4): 1976. DOI: 10.3390/ijms23041976.
[23]
Latifi Z, Fattahi A, Ranjbaran A, et al. Potential roles of metalloproteinases of endometrium-derived exosomes in embryo-maternal crosstalk during implantation[J]. J Cell Physiol, 2018, 233(6): 4530-4545. DOI: 10.1002/jcp.26259.
[24]
Ng YH, Rome S, Jalabert A, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation[J]. PLoS One, 2013, 8(3): e58502. DOI: 10.1371/journal.pone.0058502.
[25]
Vilella F, Moreno-Moya JM, Balaguer N, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome[J]. Development, 2015, 142(18): 3210-3221. DOI: 10.1242/dev.124289.
[26]
Sternberg AK, Buck VU, Classen-Linke I, et al. How mechanical forces change the human endometrium during the menstrual cycle in preparation for embryo implantation[J]. Cells, 2021, 10(8): 2008. DOI: 10.3390/cells10082008.
[27]
Massimiani M, Lacconi V, La Civita F, et al. Molecular signaling regulating endometrium-blastocyst crosstalk[J]. Int J Mol Sci, 2019, 21(1): 23. DOI: 10.3390/ijms21010023.
[28]
Giacomini E, Alleva E, Fornelli G, et al. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface[J]. Clin Exp Immunol, 2019, 198(1): 15-23. DOI: 10.1111/cei.13304.
[29]
Dissanayake K, Nõmm M, L?ttekivi F, et al. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers[J]. Theriogenology, 2020, 149: 104-116. DOI: 10.1016/j.theriogenology.2020.03.008.
[30]
Szuszkiewicz J, Myszczynski K, Reliszko ZP, et al. Early steps of embryo implantation are regulated by exchange of extracellular vesicles between the embryo and the endometrium[J]. FASEB J, 2022, 36(8): e22450. DOI: 10.1096/fj.202200677R.
[31]
Bidarimath M, Khalaj K, Kridli RT, et al. Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus-endometrial cross-talk[J]. Sci Rep, 2017, 7: 40476. DOI: 10.1038/srep40476.
[32]
Wu HM, Chen LH, Hsu LT, et al. Immune tolerance of embryo implantation and pregnancy: the role of human decidual stromal cell- and embryonic-derived extracellular vesicles[J]. Int J Mol Sci, 2022, 23(21): 13382. DOI: 10.3390/ijms232113382.
[33]
Saint-Dizier M, Schoen J, Chen S, et al. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions[J]. Int J Mol Sci, 2019, 21(1): 223. DOI: 10.3390/ijms21010223.
[34]
Aoki S, Inoue Y, Shinozawa A, et al. miR-17-5p in bovine oviductal fluid affects embryo development[J]. Mol Cell Endocrinol, 2022, 551: 111651. DOI: 10.1016/j.mce.2022.111651.
[35]
Sidrat T, Khan AA, Joo MD, et al. Bovine oviduct epithelial cell-derived culture media and exosomes improve mitochondrial health by restoring metabolic flux during pre-implantation development[J]. Int J Mol Sci, 2020, 21(20): 7589. DOI: 10.3390/ijms21207589.
[36]
George AF, Jang KS, Nyegaard M, et al. Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling[J]. Hum Reprod, 2020, 35(3): 617-640. DOI: 10.1093/humrep/deaa015.
[37]
Crawford G, Ray A, Gudi A, et al. The role of seminal plasma for improved outcomes during in vitro fertilization treatment: review of the literature and Meta-analysis[J]. Hum Reprod Update, 2015, 21(2): 275-284. DOI: 10.1093/humupd/dmu052.
[38]
Goss DM, Vasilescu SA, Sacks G, et al. Microfluidics facilitating the use of small extracellular vesicles in innovative approaches to male infertility[J]. Nat Rev Urol, 2023, 20(2): 66-95. DOI: 10.1038/s41585-022-00660-8.
[39]
Yang C, Guo WB, Zhang WS, et al. Comprehensive proteomics analysis of exosomes derived from human seminal plasma[J]. Andrology, 2017, 5(5): 1007-1015. DOI: 10.1111/andr.12412.
[40]
Bai R, Latifi Z, Kusama K, et al. Induction of immune-related gene expression by seminal exosomes in the porcine endometrium[J]. Biochem Biophys Res Commun, 2018, 495(1): 1094-1101. DOI: 10.1016/j.bbrc.2017.11.100.
[41]
Paktinat S, Hashemi SM, Ghaffari Novin M, et al. Seminal exosomes induce interleukin-6 and interleukin-8 secretion by human endometrial stromal cells[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 235: 71-76. DOI: 10.1016/j.ejogrb.2019.02.010.
[42]
Li L, Liu Y, Feng T, et al. The AHNAK induces increased IL-6 production in CD4 T cells and serves as a potential diagnostic biomarker for recurrent pregnancy loss[J]. Clin Exp Immunol, 2022, 209(3): 291-304. DOI: 10.1093/cei/uxac067.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[3] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[4] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[5] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[6] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[7] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[8] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[9] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[10] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要