切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (06) : 734 -744. doi: 10.3877/cma.j.issn.1673-5250.2023.06.016

论著

采取调强放疗联合后装治疗宫颈癌患者的预后模型及危险分层系统构建
武渊1, 朱必清2, 何丹2, 王海蓉2, 李倩2,()   
  1. 1. 江苏省肿瘤医院/江苏省肿瘤防治研究所/南京医科大学附属肿瘤医院内科,南京 210009
    2. 江苏省肿瘤医院/江苏省肿瘤防治研究所/南京医科大学附属肿瘤医院放疗科,南京 210009
  • 收稿日期:2023-01-10 修回日期:2023-08-20 出版日期:2023-12-01
  • 通信作者: 李倩

Construction of a prognostic nomogram model and risk stratification system for cervical cancer patients with intensity modulated radiation therapy and after-loading therapy

Yuan Wu1, Biqing Zhu2, Dan He2, Hairong Wang2, Qian Li2,()   

  1. 1. Department of Internal Medicine, Jiangsu Cancer Hospital / Jiangsu Institute of Cancer Research/Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
    2. Department of Radiotherapy, Jiangsu Cancer Hospital / Jiangsu Institute of Cancer Research / Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
  • Received:2023-01-10 Revised:2023-08-20 Published:2023-12-01
  • Corresponding author: Qian Li
  • Supported by:
    Jiangsu Provincial Maternal and Child Health Research Project(F201870)
引用本文:

武渊, 朱必清, 何丹, 王海蓉, 李倩. 采取调强放疗联合后装治疗宫颈癌患者的预后模型及危险分层系统构建[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 734-744.

Yuan Wu, Biqing Zhu, Dan He, Hairong Wang, Qian Li. Construction of a prognostic nomogram model and risk stratification system for cervical cancer patients with intensity modulated radiation therapy and after-loading therapy[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 734-744.

目的

探讨构建采取调强放疗(IMRT)+后装治疗宫颈癌患者的预后列线图预测模型的方法,并建立该模型的预后危险分层系统。

方法

选择2015年6月至2016年12月于江苏省肿瘤医院/江苏省肿瘤防治研究所/南京医科大学附属肿瘤医院进行IMRT+后装治疗的258例宫颈癌患者为研究对象。采用Kaplan-Meier法,绘制不同临床因素宫颈癌患者总体生存(OS)曲线,并采用Log-rank检验进行比较。采用多因素Cox比例风险回归分析法,筛选影响采取IMRT+后装治疗宫颈癌患者预后的独立危险因素,并采用R软件rms程序包,构建宫颈癌患者预后列线图预测模型,采用受试者工作特征(ROC)曲线及曲线下面积(AUC)与校准曲线,评价该列线图预测模型预测采取上述治疗策略宫颈癌患者的预后效能。采用递归分割分析(RPA)法,根据列线图模型,预测采取上述治疗策略宫颈癌患者预后风险评分,并构建宫颈癌患者预后危险分层系统。本研究遵循的程序符合江苏省肿瘤医院伦理委员会规定,通过该伦理委员会审查及批准(审批文号:2023科-快017),并与所有患者签署临床研究知情同意书。

结果

①对本组258例宫颈癌患者均采取IMRT+后装治疗后,完全缓解(CR)率、部分缓解(PR)率及临床总有效率分别为74.4%(192/258)、20.9%(54/258)及95.3%(246/258)。②本组258例宫颈癌患者的1、3、5年OS率分别为93.8%、79.5%和64.0%。采取Log-rank检验进行宫颈癌患者预后影响因素的单因素分析结果显示,宫颈癌患者年龄(χ2=4.25、P=0.039),病理学类型(χ2=15.41、P<0.001),国际妇产科联盟(FIGO)临床分期(χ2=22.17、P<0.001),是否伴淋巴结转移(χ2=28.37、P<0.001),同期化疗情况(χ2=10.99、P=0.004)、诱导+序贯化疗情况(χ2=14.34、P<0.001)及采取IMRT+后装治疗近期疗效(χ2=68.67、P<0.001),均是影响其预后的因素。③多因素Cox比例风险回归分析结果显示,非鳞状上皮宫颈癌(HR=2.404,95%CI:2.305~3.577,P=0.005),FIGO临床分期为Ⅲ、Ⅳ期(HR=2.455、5.374,95%CI:2.386~3.609、3.221~6.507,P=0.006、<0.001),伴淋巴结转移(HR=4.325,95%CI:2.189~6.420,P<0.001),未进行同期化疗(HR=1.730,95%CI:1.359~2.811,P=0.040),采取IMRT+后装治疗后达PR及未缓解(HR=1.779、3.227,95%CI:1.424~2.888、3.100~5.317,P=0.047、<0.001),均是影响采取IMRT+后装治疗宫颈癌患者预后的独立危险因素。④根据上述多因素Cox比例风险回归分析结果构建预测采取IMRT+后装治疗宫颈癌患者的预后列线图预测模型,预测采取IMRT+后装治疗宫颈癌患者的3、5年OS率的ROC-AUC分别为0.827(95%CI:0.731~0.923,P<0.001)和0.789(95%CI:0.695~0.883,P<0.001),该预测模型对采取IMRT+后装治疗宫颈癌患者3、5年OS率的区分度较高。绘制该预测模型的校准曲线分析结果显示,其对采取上述治疗策略宫颈癌患者的3、5年OS率的校准曲线,均与理想曲线较接近,拟合反映良好,该预测模型预测采取IMRT+后装治疗宫颈癌患者的3、5年OS率与实际OS率相对一致,校准度较好。⑤根据该列线图预测模型,预测采取IMRT+后装治疗宫颈癌患者风险评分,采用RPA法构建宫颈癌患者预后危险分层系统,将其分为极低风险组(风险评分<138分)、低风险组(138分≤风险评分<214分)、中风险组(214分≤风险评分<274分)和高风险组(风险评分≥274分)。在不同FIGO临床分期宫颈癌患者中进行验证结果显示,该危险分层系统可区分FIGO临床分期为Ⅱ~Ⅳ期极低风险组、低风险组、中风险组与高风险组患者的3、5年OS率,差异均有统计学意义(P<0.05)。

结论

本研究基于宫颈癌患者病理学类型、FIGO临床分期、是否伴淋巴结转移、同期化疗情况、采取IMRT+后装治疗近期疗效这5项因素,构建预测采取IMRT+后装治疗宫颈癌患者的预后列线图预测模型,该模型区分度、校准度均较好,可有效预测采取IMRT+后装治疗宫颈癌患者预后。基于该预测模型所构建的宫颈癌患者预后危险分层系统亦具有一定临床价值。

Objective

To explore the method of constructing a prognostic nomogram prediction model for cervical cancer patients with intensity modulated radiation therapy (IMRT) and after-loading therapy, and establish prognostic risk stratification system based on this model.

Methods

A total of 258 cervical cancer patients who received IMRT and after-loading therapy in Jiangsu Cancer Hospital / Jiangsu Institute of Cancer Research / Affiliated Cancer Hospital of Nanjing Medical University from June 2015 to December 2016 were selected as study subjects. Kaplan-Meier method was used to plot the overall survival (OS) curves of cervical cancer patients with different clinical factors, and Log-rank test was used for comparison. Multiple Cox proportional risk regression analysis was used to screen independent risk factors that affect the prognosis of cervical cancer patients receiving IMRT and after-loading therapy, and rms package of R software was used to build nomogram prediction model, and receiver operating characteristic (ROC) curve and area under curve (AUC) and calibration curve were used to evaluate the predictive performance of the nomogram prediction model for predicting the prognosis of cervical cancer patients receiving IMRT and after-loading therapy. The recursive partition analysis (RPA) method was used to predict individual risk scores of cervical cancer patients receiving IMRT and after-loading therapy based on nomogram model, and prognostic risk stratification system of cervical cancer patients was constructed. The procedures followed in this study complied with the regulations of the Ethics Committee of Jiangsu Cancer Hospital and have been reviewed and approved by the Ethics Committee (Approval No. 2023-017). All patients signed clinical research consent form.

Results

①Among 258 cervical cancer patients, complete remission (CR) rate after IMRT and after-loading therapy was 74.4% (192/258), partial remission (PR) rate was 20.9% (54/258), and total clinical effective rate was 95.3% (246/258). ②The 1-year, 3-year, and 5-year OS rates of 258 cervical cancer patients were 93.8%, 79.5%, and 64.0%, respectively. Univariate analysis of prognostic factors for cervical cancer patients by Log-rank test showed that age (χ2=4.25, P=0.039), pathological type (χ2=15.41, P<0.001), International Federation of Gynecology and Obstetrics (FIGO) stage (χ2=22.17, P<0.001), with or without lymph node metastasis (χ2=28.37, P<0.001), concurrent chemotherapy (χ2=10.99, P=0.004), induction and sequential chemotherapy (χ2=14.34, P<0.001), and short-term efficacy of IMRT and after-loading therapy (χ2=68.67, P<0.001) were all factors affecting the prognosis of cervical cancer patients receiving IMRT and after-loading therapy (χ2=68.672, P<0.001). ③Results of multivariate Cox proportional risk regression analysis showed that non squamous cell carcinoma cervical cancer patients (HR=2.404, 95%CI: 2.305-3.577, P=0.005), FIGO stages Ⅲ and Ⅳ (HR=2.455, 5.374; 95%CI: 2.386-3.609, 3.221-6.507; P=0.006, <0.001), with lymph node metastasis (HR=4.325, 95%CI: 2.189-6.420, P<0.001), lack of concurrent chemotherapy (HR=1.730, 95%CI: 1.359-2.811, P=0.040), PR and no response after IMRT and after-loading therapy were all independent risk factors affecting the prognosis of cervical cancer patients receiving IMRT and after-loading therapy. ④Nomogram prediction model was constructed based on results of the above multivariate Cox proportional risk regression analysis to predict the prognosis of cervical cancer patients receiving IMRT and after-loading therapy. ROC-AUC of the nomogram prediction model for predicting 3-year and 5-year OS rates of cervical cancer patients receiving IMRT and after-loading therapy were 0.827 (95%CI: 0.731-0.923, P<0.001) and 0.789 (95%CI: 0.695-0.883, P<0.001), respectively, indicating that the prediction model had high discriminability for 3-year and 5-year OS rates of cervical cancer patients receiving IMRT and after-loading therapy. The calibration curve analysis results of the predicted model showed that the calibration curves of 3-year and 5-year OS rates of cervical cancer patients receiving IMRT and after-loading therapy were close to the ideal curves, and the fitting was well reflected, indicating that the predicted 3-year OS rates of cervical cancer patients receiving IMRT and after-loading therapy were relatively consistent with the actual OS rates, and the calibration was good. ⑤Based on the risk score of cervical cancer patients predicted by the nomogram prediction model, prognostic risk stratification system for cervical cancer patients was constructed with the RPA method, in which all cervical cancer patients were divided into four groups: extremely low risk group (risk score<138 points), low risk group (138 points≤risk score<214 points), medium risk group (214 points≤risk score<274 points), and high risk group (risk score≥274 points). Validation results among cervical cancer patients with different FIGO stages showed that the risk stratification system can distinguish the 3-year and 5-year OS rates of the extremely low risk group, low risk group, medium risk group, and high risk group in FIGO stage Ⅱ-Ⅳ cervical cancer patients, and all differences were statistically significant (P<0.05).

Conclusions

This study constructs nomogram prediction model for predicting the prognosis of cervical cancer patients treated with IMRT and after-loading therapy based on five factors: pathological type, FIGO staging, with lymph node metastasis, concurrent chemotherapy, and short-term efficacy of IMRT and after-loading therapy, and the model has good discrimination and calibration, and can effectively predict the prognosis of cervical cancer patients after treatment of IMRT and after-loading therapy. The prognostic risk stratification system for cervical cancer patients constructed based on this prediction model has certain clinical value.

图1 本研究258例不同临床因素宫颈癌患者的OS曲线分析(图1A:年龄<65岁与≥65岁宫颈癌患者OS曲线;图1B:鳞状上皮宫颈癌与非鳞状上皮宫颈癌患者OS曲线;图1C:FIGO临床分期为ⅠB、ⅡA、ⅡB、ⅢA、ⅢB、ⅣA期宫颈癌患者OS曲线;图1D:未伴淋巴结转移与伴淋巴结转移宫颈癌患者OS曲线;图1E:同期未采取化疗与同期采取单药、双药联合化疗宫颈癌患者OS曲线;图1F:未采取诱导+序贯化疗与采取1~2、3~7个疗程诱导+序贯化疗宫颈癌患者OS曲线;图1G:采取IMRT+后装治疗后达CR、PR与未缓解宫颈癌患者OS曲线) 注:OS为总体生存。FIGO为国际妇产科联盟,CR为完全缓解,PR为部分缓解,IMRT为调强放疗
表1 本研究258例不同临床因素宫颈癌患者的1、3、5年OS率比较[例数(%)]
表2 采取IMRT+后装治疗宫颈癌患者预后影响因素的多因素Cox比例风险回归分析结果
图2 采取IMRT+后装治疗宫颈癌患者的预后列线图预测模型 注:IMRT为调强放疗。FIGO为国际妇产科联盟,CR为完全缓解,PR为部分缓解,OS为总体生存
图3 采取IMRT+后装治疗宫颈癌患者的预后列线图预测模型预测宫颈癌患者3、5年OS率的ROC曲线(图3A:预测宫颈癌患者3年OS率的ROC曲线;图3B:预测宫颈癌患者5年OS率的ROC曲线) 注:IMRT为调强放疗。OS为总体生存,ROC曲线为受试者工作特征曲线
图4 预测采取IMRT+后装治疗宫颈癌患者3、5年OS率的列线图预测模型的校准曲线与理想曲线图(图4A:3年OS率;图4B:5年OS率) 注:IMRT为调强放疗,OS为总体生存
图5 采取IMRT+后装治疗宫颈癌患者的预后危险分层系统图 注:采递归分割分析法对采取IMRT+后装治疗宫颈癌患者的预后风险进行预后危险分层系统构建。IMRT为调强放疗
表3 不同预后危险分层系统的风险组FIGO临床分期为Ⅰ~Ⅳ期宫颈癌患者的3、5年OS率比较[例数(%)]
[1]
Lõhmussaar K, Oka R, Espejo Valle-Inclan J, et al. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer[J]. Cell Stem Cell, 2021, 28(8): 1380.e6-1396.e6. DOI: 10.1016/j.stem.2021.03.012.
[2]
Karasawa Y, Mabuchi S, Matsumoto Y, et al. Iliac artery-enteric fistula developed during bevacizumab-containing chemotherapy for recurrent cervical cancer: a case report and literature review[J]. Gynecol Oncol Rep, 2022, 40: 100938. DOI: 10.1016/j.gore.2022.100938.
[3]
Gultekin M, Beduk Esen CS, Balci B, et al. Role of vaginal brachytherapy boost following adjuvant external beam radiotherapy in cervical cancer: Turkish Society for Radiation Oncology Gynecologic Group Study (TROD 04-002)[J]. Int J Gynecol Cancer, 2021, 31(2): 185-193. DOI: 10.1136/ijgc-2020-001733.
[4]
Imamura A, Oike T, Sato H, et al. Comparative analysis of the antitumor immune profiles of paired radiotherapy-naive and radiotherapy-treated cervical cancer tissues[J]. Anticancer Res, 2022, 42(7): 3341-3348. DOI: 10.21873/anticanres.15821.
[5]
王海云,许林,赵本华,等. 高剂量率后装治疗巨块型宫颈癌患者大出血的疗效及安全性分析[J]. 血栓与止血学2020, 26(3): 462-464. DOI: 10.3969/j.issn.1009-6213.2020.03.039.
[6]
Mell LK, Xu R, Yashar CM, et al. Phase 1 trial of concurrent gemcitabine and cisplatin with image guided intensity modulated radiation therapy for locoregionally advanced cervical carcinoma[J]. Int J Radiat Oncol Biol Phys, 2020, 107(5): 964-973. DOI: 10.1016/j.ijrobp.2020.04.019.
[7]
Chargari C, Deutsch E, Blanchard P, et al. Brachytherapy: an overview for clinicians[J]. CA Cancer J Clin, 2019, 69(5): 386-401. DOI: 10.3322/caac.21578.
[8]
侯娟娟,王志莲. 宫颈癌分期的研究进展[J]. 现代肿瘤医学2020, 28(13): 2354-2357. DOI: 10.3969/j.issn.1672-4992.2020.13.039.
[9]
王坚,胡莉钧,于波,等. 422例宫颈癌患者调强放疗加后装治疗的不良反应和预后因素分析[J]. 中华放射医学与防护杂志2019, 39(11): 807-812. DOI: 10.3760/cma.j.issn.0254-509&2019.11.002.
[10]
洪文翠,吕银. 局部晚期子宫颈癌放化疗后复发危险因素分析及列线图预测模型的构建[J]. 实用妇产科杂志2023, 39(4): 302-307.
[11]
李静,索红燕,孔为民. 《国际妇产科联盟(FIGO)2018癌症报告:宫颈癌新分期及诊治指南》解读[J]. 中国临床医生杂志2019, 47(6): 646-649. DOI: 10.3969/j.issn.2095-8552.2019.06.008.
[12]
朱大高,王辉,马恺丽,等. 肺癌脑转移患者放疗前后血清糖类抗原125水平变化及预后影响因素分析[J]. 安徽医学2020, 41(3): 313-316. DOI: 10.3969/j.issn.1000-0399.2020.03.023.
[13]
刘瑞雪. 调强放疗联合腔内后装放疗对中晚期宫颈癌的疗效[J]. 深圳中西医结合杂志2020, 30(3): 178-179. DOI: 10.16458/j.cnki.1007-0893.2020.03.089.
[14]
古力米热·布然江,热孜亚·库尔班,艾力克木·阿不都玩克,等. 三维调强放疗配合CT引导三维插植腔内后装治疗中晚期宫颈癌的临床疗效[J]. 实用癌症杂志2019, 34(2): 227-230. DOI: 10.3969/j.issn.1001-5930.2019.02.014.
[15]
余进进,商文庆,董春林. 调强放疗联合腔内后装治疗中晚期宫颈癌的临床疗效[J]. 江苏医药2016, 42(16): 1814-1816.
[16]
Antony F, Varghese KM, Raphael CJ, et al. Dosimetric comparison of organs at risk with three-dimensional conformal radiation, intensity-modulated radiation and volumetric-modulated arc therapy in cervical cancer: a cross sectional study[J]. Int J Adv Med, 2021, 8(4): 586-590. DOI: 10.18203/2349-3933.IJAM20210978.
[17]
闫慧娟,徐丽娜,周丽霞. 调强放疗联合后装治疗在宫颈癌患者中的应用及安全性分析[J]. 医学美学美容2020, 29(18): 61.
[18]
贾靖. 调强适形放疗加后装放疗联合化疗在中晚期宫颈癌治疗中的临床效果[J]. 养生保健指南2021, 47: 114-115.
[19]
Wakatsuki M, Kato S, Ohno T, et al. Multi-institutional observational study of prophylactic extended-field concurrent chemoradiation therapy using weekly cisplatin for patients with pelvic node-positive cervical cancer in east and southeast Asia[J]. Int J Radial Oncol Biol Phys, 2019, 105(1): 183-189. DOI: 10.1016/j.ijrobp.2019.04.039.
[20]
王坚,胡莉钓,于波,等. 调强放疗联合后装治疗的老年宫颈癌患者不良反应和预后因素分析[J]. 中华老年医学杂志2019, 38(10): 1148-1152. DOI: 10.3760/cma.j.issn.0254-9026.2019.10.021.
[21]
Kol KVV, Ebisch R, Aa MVD, et al. The prognostic value of the presence of pelvic and/or para-aortic lymph node metastases in cervical cancer patients; the influence of the new FIGO classification (stage ⅢC)[J]. Gynecol Oncol, 2023, 171: 9-14. DOI: 10.1016/j.ygyno.2023.01.023.
[22]
冯艳晓,贾书敏. 早期宫颈癌患者术后5年生存情况及预后影响因素研究[J]. 实用癌症杂志2023, 38(1): 36-38. DOI: 10.3969/j.issn.1001-5930.2023.01.009.
[23]
Jiang S, Fang J, Yu T, et al. Novel model predicts diabetic nephropathy in type 2 diabetes[J]. Am J Nephrol, 2020, 51(2): 130-138. DOI: 10.1159/000505145.
[24]
冯逸凡,伍曙薇,李雨洋,等. 宫颈癌术后预后分析及列线图建立[J]. 安徽医科大学学报2022, 57(4): 631-635. DOI: 10.19405/j.cnki.issn1000-1492.2022.04.023.
[25]
张小鹏,胡川,王远贺,等. 四肢纤维肉瘤病人预后因素分析与列线图的构建[J]. 青岛大学学报(医学版), 2022, 58(1): 24-30. DOI: 10.11712/jms.2096-5532.2022.58.005.
[1] 王晓梅, 刘冰, 马丽琼, 卢祖静, 苗建军. 基于LASSO-Cox回归分析的非轻症急性胰腺炎死亡风险列线图预测模型的建立和临床应用效果分析[J]. 中华普通外科学文献(电子版), 2024, 18(01): 44-50.
[2] 刘政宏, 王凤力, 吉亚君, 高佳. 胃癌中ELK3蛋白的表达与临床病理特征和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 155-159.
[3] 张琳, 李婷. CRIP1在胃癌中的表达及与临床病理指标和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 171-175.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 刘化胜, 郑龙波, 秦琛, 王伟芹, 郑学风, 马金龙, 马正, 王洪霞, 刘磊, 胡继霖. 基于影像学指标构建永久性乙状结肠造口旁疝发病风险预测模型[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(01): 75-82.
[10] 孙振, 谭天华, 郑洋洋, 李喆, 宋京海. 基于术前纤维蛋白原与白蛋白比值构建肝癌微血管侵犯的预测模型[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 27-32.
[11] 黄金灿, 王迪, 崔松平, 陈晴, 吕少诚, 贺强, 郎韧. 预后营养指数对交界可切除胰腺癌患者术后预后的预测价值[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 51-56.
[12] 潘晓帆, 徐勤义, 陆瑨, 王丹, 刘路路, 董万利. 颅内动脉瘤破裂介入术后并发脑疝的风险因素分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 37-44.
[13] 谢鸿, 李娜, 李尚日, 谢涛. 肠道菌群特征对结肠癌化学治疗疗效的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 53-56.
[14] 薛文欣, 常婉英, 肖瑶, 张盼盼, 党晓智, 宋宏萍. 乳腺恶性非肿块型病变列线图预测模型的构建及外部验证[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1045-1050.
[15] 王林源, 熊鑫, 杨坤, 邓勇志. 基于冠状动脉CT血管成像的影像组学列线图鉴别诊断易损斑块的价值[J]. 中华诊断学电子杂志, 2024, 12(01): 1-8.
阅读次数
全文


摘要