切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2017, Vol. 13 ›› Issue (06) : 633 -639. doi: 10.3877/cma.j.issn.1673-5250.2017.06.003

所属专题: 文献

述评

氧化应激与多囊卵巢综合征雄激素增多症关系的研究现状
张仁浇1, 刘宏伟2, 白怀1, 范平1,()   
  1. 1. 610041 成都,四川大学华西第二医院遗传代谢性疾病及围生医学实验室、出生缺陷与相关妇儿疾病教育部重点实验室
    2. 610041 成都,四川大学华西第二医院妇产科
  • 收稿日期:2017-07-01 修回日期:2017-10-16 出版日期:2017-12-01
  • 通信作者: 范平

Recent advance on relationship between oxidative stress and hyperandrogenism in polycystic ovary syndrome

Renjiao Zhang1, Hongwei Liu2, Huai Bai1, Ping Fan1,()   

  1. 1. Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
    2. Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2017-07-01 Revised:2017-10-16 Published:2017-12-01
  • Corresponding author: Ping Fan
  • About author:
    Corresponding author: Fan Ping, Email:
引用本文:

张仁浇, 刘宏伟, 白怀, 范平. 氧化应激与多囊卵巢综合征雄激素增多症关系的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(06): 633-639.

Renjiao Zhang, Hongwei Liu, Huai Bai, Ping Fan. Recent advance on relationship between oxidative stress and hyperandrogenism in polycystic ovary syndrome[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2017, 13(06): 633-639.

多囊卵巢综合征(PCOS)是一种病因未明、临床表现呈高度异质性的常见女性内分泌代谢紊乱性疾病,以稀发排卵和(或)无排卵(OA),临床和(或)生化检查存在雄激素增多症(HA)改变,超声检查结果显示卵巢多囊样(PCO)改变为特征。除了月经和生殖功能异常外,PCOS患者常伴有肥胖、胰岛素抵抗(IR)、糖脂代谢异常、氧化应激(OS)增加及亚临床慢性炎症等危险因素,可显著增加代谢综合征、2型糖尿病和远期心血管疾病的发病风险。HA是PCOS的重要特征和关键发病因素之一,在PCOS发病机制中起着重要作用。OS增加不仅是导致动脉粥样硬化与心、脑血管疾病等的重要因素,也与PCOS的发生和进展密切相关。新近研究结果表明,HA与PCOS患者的OS增加密切相关。笔者拟从OS的分子来源与机体抗氧化防御机制,PCOS患者OS水平及其与HA的关系,HA与OS的相互影响及其可能的作用机制,对PCOS患者OS增加的预防、治疗现状及未来展望等方面进行阐述。

Polycystic ovary syndrome (PCOS) is one of common female endocrine metabolic disorders, characterized by oligo-ovulation and/or anovulation (OA), clinical and/or biochemical hyperandrogenism (HA) and polycystic ovaries (PCO). The clinical manifestations of PCOS are highly complex and heterogeneous. Aside from menstrual and reproductive dysfunctions, PCOS is often associated with long-term health risks, such as obesity, insulin resistance (IR), dyslipidaemia, increased oxidative stress (OS), subclinical chronic inflammation, elevated risks of metabolic syndrome, type 2 diabetes, and future cardiovascular diseases. HA plays an important role in the pathogenesis of PCOS. Increased OS is not only an important factor leading to atherosclerosis and cardiovascular diseases, but also potentially related to the occurrence and progress of PCOS. Recent studies have shown that there was a strong association between HA and increased OS in PCOS. In this article, we focus on the sources of OS molecules and the antioxidant defense mechanisms, the OS status in PCOS and its relationship with HA, the interaction and its impossible mechanisms between HA and OS, and the current status and future prospects of OS prevention and treatment in patients with PCOS.

[1]
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS)[J]. Human Reprod, 2004, 19(1): 41-47.
[2]
Li R, Zhang Q, Yang D, et al. Prevalence of polycystic ovary syndrome in women in China: a large community-based study[J]. Hum Reprod, 2013, 28(9): 2562-2569.
[3]
Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Consensus on women′s health aspects of polycystic ovary syndrome (PCOS)[J]. Hum Reprod, 2012, 27(1): 14-24.
[4]
Murri M, Luque-Ramírez M, Insenser M, et al. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and Meta-analysis[J]. Hum Reprod Update, 2013, 19(3): 268-288.
[5]
Zhang J, Fan P, Liu H, et al. Apolipoprotein A-I and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS[J]. Hum Reprod, 2012, 27(8): 2484-2493.
[6]
Lim SS, Davies MJ, Norman RJ, et al. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and Meta-analysis[J]. Hum Reprod Update, 2012, 18(6): 618-637.
[7]
de Groot PC, Dekkers OM, Romijn JA, et al. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and Meta-analysis[J]. Hum Reprod Update, 2011, 17(4): 495-500.
[8]
McAllister JM, Legro RS, Modi BP, et al. Functional genomics of PCOS: from GWAS to molecular mechanisms[J]. Trends Endocrinol Metab, 2015,26(3):118-124.
[9]
Shi Y, Zhao H, Shi Y, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome [J]. Nat Genet, 2012, 44(9): 1020-1025.
[10]
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review[J]. Eur J Med Chem, 2015, 97: 55-74.
[11]
Zhang R, Liu H, Bai H, et al. Oxidative stress status in Chinese women with different clinical phenotypes of polycystic ovary syndrome[J]. Clin Endocrinol (Oxf), 2017, 86(1): 88-96.
[12]
Zuo T, Zhu M, Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers[J]. Oxid Med Cell Longev, 2016, 2016: 8589318.
[13]
Kajihara T, Tochigi H, Prechapanich J, et al. Androgen signaling in decidualizing human endometrial stromal cells enhances resistance to oxidative stress[J]. Fertil Steril, 2012, 97(1): 185-191.
[14]
González F, Nair KS, Daniels JK, et al. Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women[J]. J Clin Endocrinol Metab, 2012, 97(8): 2836-2843.
[15]
Gonzalez F, Sia CL, Shepard MK, et al. Hyperglycemia-induced oxidative stress is independent of excess abdominal adiposity in normal-weight women with polycystic ovary syndrome[J]. Hum Reprod, 2012, 27(12): 3560-3568.
[16]
Agarwal A, Aponte-Mellado A, Premkumar BJ, et al. The effects of oxidative stress on female reproduction: a review[J]. Reprod Biol Endocrinol, 2012, 10: 49.
[17]
Geybels MS, van den Brandt PA, van Schooten FJ, et al. Oxidative stress-related genetic variants, pro- and antioxidant intake and status, and advanced prostate cancer risk[J]. Cancer Epidemiol Biomarkers Prev, 2015, 24(1): 178-186.
[18]
Erel O. A new automated colorimetric method for measuring total oxidant status[J]. Clin Biochem, 2005, 38(12): 1103-1111.
[19]
Zhang Y, Liu H, He J, et al. Lactonase activity and status of paraoxonase 1 in Chinese women with polycystic ovarian syndrome[J]. Eur J Endocrinol, 2015, 172(4): 391-402.
[20]
Zhang J, Zhang Y, Liu H, et al. Antioxidant properties of high-density lipoproteins are impaired in women with polycystic ovary syndrome[J]. Fertil Steril, 2015, 103(5): 1346-1354.
[21]
Fan P, Liu H, Wang Y, et al. Apolipoprotein E-containing HDL-associated platelet-activating factor acetylhydrolase activities and malondialdehyde concentrations in patients with PCOS[J]. Reprod Biomed Online, 2012, 24(2): 197-205.
[22]
Savic-Radojevic A, Bozic Antic I, Coric V, et al. Effect of hyperglycemia and hyperinsulinemia on glutathione peroxidase activity in non-obese women with polycystic ovary syndrome[J]. Hormones (Athens), 2015, 14(1): 101-108.
[23]
Nisenblat V, Norman RJ. Androgens and polycystic ovary syndrome[J]. Curr Opin Endocrinol Diabetes Obes, 2009, 16(3): 224-231.
[24]
Moore AM, Prescott M, Marshall CJ, et al. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome[J]. Proc Natl Acad Sci U S A, 2015,112(2): 596-601.
[25]
Hurliman A, Keller Brown J, Maille N, et al. Hyperandrogenism and insulin resistance, not changes in body weight, mediate the development of endothelial dysfunction in a female rat model of polycystic ovary syndrome (PCOS)[J]. Endocrinology, 2015, 156(11): 4071-4080.
[26]
Burt Solorzano CM, Beller JP, Abshire MY, et al. Neuroendocrine dysfunction in polycystic ovary syndrome[J]. Steroids, 2012, 77(4): 332-337.
[27]
Newell-Fugate AE, Taibl JN, Alloosh M, et al. Effects of obesity and metabolic syndrome on steroidogenesis and folliculogenesis in the female Ossabaw mini-pig[J]. PLoS One, 2015, 10(6): e0128749.
[28]
Unfer V, Carlomagno G, Dante G, et al. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials[J]. Gynecol Endocrinol, 2012, 28(7): 509-515.
[29]
Bremer AA, Miller WL. The serine phosphorylation hypothesis of polycystic ovary syndrome: a unifying mechanism for hyperandrogenemia and insulin resistance[J]. Fertil Steril, 2008, 89(5): 1039-1048.
[30]
Duleba AJ, Spaczynski RZ, Olive DL. Insulin and insulin-like growth factor Ⅰ stimulate the proliferation of human ovarian theca-interstitial cells[J]. Fertil Steril, 1998, 69(2): 335-340.
[31]
Ibáñez L, Potau N, Zampolli M, et al. Hyperinsulinemia and decreased insulin-like growth factor-binding protein-1 are common features in prepubertal and pubertal girls with a history of premature pubarche[J]. J Clin Endocrinol Metab, 1997, 82(7): 2283-2288.
[32]
Nestler JE, Powers LP, Matt DW, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 1991, 72(1): 83-89.
[33]
Kodaman PH, Duleba AJ. Statins in the treatment of polycystic ovary syndrome[J]. Semin Reprod Med, 2008,26(1):127-138.
[34]
Nikolić M, Macut D, Djordjevic A, et al. Possible involvement of glucocorticoids in 5alpha-dihydrotestosterone-induced PCOS-like metabolic disturbances in the rat visceral adipose tissue[J]. Mol Cell Endocrinol, 2015, 399: 22-31.
[35]
González F, Nair KS, Daniels JK, et al. Hyperandrogenism sensitizes mononuclear cells to promote glucose-induced inflammation in lean reproductive-age women[J]. Am J Physiol Endocrinol Metab, 2012, 302(3): E297-E306.
[36]
Zhao Y, Zhang C, Huang Y, et al. Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-kappaB signaling in the granulosa cells of PCOS patients[J]. J Clin Endocrinol Metab, 2015, 100(1): 201-211.
[37]
Zhao H, Zhao Y, Li T, et al. Metabolism alteration in follicular niche: the nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome[J]. Free Radic Biol Med, 2015, 86: 295-307.
[38]
Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity[J]. Int J Mol Sci, 2011, 12(5): 3117-3132.
[39]
苏椿淋,黄海艳,沈宗奇,等. 睾酮对3T3-L1脂肪细胞炎症因子生成的影响及其机制研究[J]. 中华医学杂志,2009, 89(21): 1493-1497.
[40]
Brites F, Martin M, Guillas I, et al. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit[J]. BBA Clin, 2017, 8: 66-77.
[41]
Mackness B, Mackness M. The antioxidant properties of high-density lipoproteins in atherosclerosis[J]. Panminerva Med, 2012, 54(2): 83-90.
[42]
Pandey V, Singh A, Singh A, et al. Role of oxidative stress and low-grade inflammation in letrozole-induced polycystic ovary syndrome in the rat[J]. Reprod Biol, 2016, 16(1): 70-77.
[43]
Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance[J]. Antioxid Redox Signal, 2005, 7(7-8): 1040-1052.
[44]
Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline[J]. J Clin Endocrinol Metab, 2013, 98(12): 4565-4592.
[45]
Escobar-Morreale HF, Carmina E, Dewailly D, et al. Epidemiology, diagnosis and management of hirsutism: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome Society[J]. Hum Reprod Update, 2012, 18(2): 146-170.
[46]
Köse SA, NazIroĝlu M. N-acetyl cysteine reduces oxidative toxicity, apoptosis, and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome[J]. Free Radic Res, 2015, 49(3): 338-346.
[47]
Macut D, Bjekić-Macut J, Savić-Radojević A. Dyslipidemia and oxidative stress in PCOS[J]. Front Horm Res, 2013, 40: 51-63.
[48]
Cheraghi E, Mehranjani MS, Shariatzadeh MA, et al. N-Acetylcysteine improves oocyte and embryo quality in polycystic ovary syndrome patients undergoing intracytoplasmic sperm injection: an alternative to metformin[J]. Reprod Fertil Dev, 2016,28(6):723-731.
[49]
Maged AM, Elsawah H, Abdelhafez A, et al. The adjuvant effect of metformin and N-acetylcysteine to clomiphene citrate in induction of ovulation in patients with Polycystic Ovary Syndrome[J]. Gynecol Endocrinol, 2015, 31(8): 635-638.
[50]
Spritzer PM, Lecke SB, Fabris VC, et al. Blood trace element concentrations in polycystic ovary syndrome: systematic review and Meta-analysis[J]. Biol Trace Elem Res, 2017, 175(2): 254-262.
[51]
Razavi M, Jamilian M, Kashan ZF, et al. Selenium supplementation and the effects on reproductive outcomes, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome[J]. Horm Metab Res, 2016,48(3): 185-190.
[52]
Mohammad Hosseinzadeh F, Hosseinzadeh-Attar MJ, Yekaninejad MS, et al. Effects of selenium supplementation on glucose homeostasis and free androgen index in women with polycystic ovary syndrome: a randomized, double blinded, placebo controlled clinical trial[J]. J Trace Elem Med Biol, 2016, 34: 56-61.
[53]
Bahmani F, Karamali M, Shakeri H, et al. The effects of folate supplementation on inflammatory factors and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled clinical trial[J]. Clin Endocrinol (Oxf), 2014, 81(4): 582-587.
[54]
Goodman NF, Cobin RH, Futterweit W, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and androgen excess and PCOS society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome - part 2[J]. Endocr Pract, 2015, 21(12): 1415-1426.
[55]
Puurunen J, Piltonen T, Puukka K, et al. Statin therapy worsens insulin sensitivity in women with polycystic ovary syndrome (PCOS): a prospective, randomized, double-blind, placebo-controlled study[J]. J Clin Endocrinol Metab, 2013, 98(12): 4798-4807.
[56]
Kwintkiewicz J, Foyouzi N, Piotrowski P, et al. Mevastatin inhibits proliferation of rat ovarian theca-interstitial cells by blocking the mitogen-activated protein kinase pathway[J]. Fertil Steril, 2006, 86(4 Suppl): 1053-1058.
[1] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[4] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[5] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[6] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[7] 魏权, 张燊, 陈慧佳, 邹姮, 胡丽娜. 女性生殖道微生物群与辅助生殖技术相关性研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 151-155.
[8] 刘艳艳, 谭曦, 彭雪. 妊娠合并膀胱低度恶性潜能乳头状尿路上皮肿瘤并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 212-218.
[9] 胡欧婵, 黄仲英. 不明原因复发性流产患者的治疗研究现状与展望[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 16-22.
[10] 尤琳, 蔡振伟, 乔荆. Turner综合征临床研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 634-639.
[11] 张晓芳, 王平. 阴道黑色素瘤诊疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 621-626.
[12] 李晓晖, 上官昌盛, 向英, 裴芝皆, 车俊志, 谢飞. 3D腹腔镜袖状胃切除术后机体能量代谢与多囊卵巢综合征患者性激素水平关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 538-541.
[13] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[14] 刘育昕, 王子晗, 张艺馨, 栾永婕, 孟凯. 肾母细胞瘤基因1在卵巢疾病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(03): 178-183.
[15] 张佳玉, 丁玉兰, 郑旋玲, 刘长勤. 睡眠障碍对多囊卵巢综合征不良影响的研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 131-136.
阅读次数
全文


摘要