[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
|
[2] |
|
[3] |
Vink FJ, Lissenberg-Witte BI, Meijer CJLM, et al. FAM19A4/miR124-2 methylation analysis as a triage test for HPV-positive women: cross-sectional and longitudinal data from a Dutch screening cohort[J]. Clinc Microbiol Infect, 2020: S1198-743X(20)30163-4. DOI: 10.1016/j.cmi.2020.03.018.
|
[4] |
Koliopoulos G, Nyaga VN, Santesso N, et al. Cytology versus HPV testing for cervical cancer screening in the general population[J]. Cochrane Database Syst Rev, 2017, 8(8): CD008587. DOI: 10.1002/14651858.CD008587.pub2.
|
[5] |
Bowden SJ, Lathouras K, Kyrgiou M. Can DNA methylation tests improve the accuracy of cervical screening?[J]. BJOG, 2021, 128(3): 515. DOI: 10.1111/1471-0528.16448.
|
[6] |
|
[7] |
De Strooper L, Berkhof J, Steenbergen R, et al. Cervical cancer risk in HPV-positive women after a negative FAM19A4/ mir124-2 methylation test: a post hoc analysis in the POBASCAM trial with 14 year follow-up[J]. Int J Cancer, 2018, 143(6): 1541-1548. DOI: 10.1002/ijc.31539.
|
[8] |
De Strooper LMA, Meijer CJ, Berkhof J, et al. Methylation analysis of the FAM19A4 gene in cervical scrapes is highly efficient in detecting cervical carcinomas and advanced CIN2/3 lesions[J]. Cancer Prev Res (Phila), 2014, 7(12): 1251-1257. DOI: 10.1158/1940-6207.CAPR-14-0237.
|
[9] |
Bao H, Zhang L, Wang L, et al. Significant variations in the cervical cancer screening rate in China by individual-level and geographical measures of socioeconomic status: a multilevel model analysis of a nationally representative survey dataset[J]. Cancer Med, 2018, 7(5): 2089-2100. DOI: 10.1002/cam4.1321.
|
[10] |
Cuschieri K, Ronco G, Lorincz A, et al. Eurogin roadmap 2017: triage strategies for the management of HPV-positive women in cervical screening programs[J]. Int J Cancer, 2018, 143(4): 735-745. DOI: 10.1002/ijc.31261.
|
[11] |
|
[12] |
|
[13] |
Lorincz AT. Virtues and weaknesses of DNA methylation as a test for cervical cancer prevention[J]. Acta Cytol, 2016, 60(6): 501-512. DOI: 10.1159/000450595.
|
[14] |
Luttmer R, De Strooper LM, Berkhof J, et al. Comparing the performance of FAM19A4 methylation analysis, cytology and HPV16/18 genotyping for the detection of cervical (pre)cancer in high-risk HPV-positive women of a gynecologic outpatient population (COMETH study)[J]. Int J Cancer, 2016, 138(4): 992-1002. DOI: 10.1002/ijc.29824.
|
[15] |
Vink FJ, Meijer C, Clifford GM, et al. FAM19A4/ miR124-2 methylation in invasive cervical cancer: a retrospective cross-sectional worldwide study[J]. Int J Cancer, 2019, 147(4): 1215-1221. DOI: 10.1002/ijc.32614.
|
[16] |
Mac M, Moody CA. Epigenetic regulation of the human papillomavirus life cycle[J]. Pathogens, 2020, 9(6): 483. DOI: 10.3390/pathogens9060483.
|
[17] |
Feng C, Dong J, Chang W, et al. The progress of methylation regulation in gene expression of cervical cancer[J]. Int J Genomics, 2018, 2018: 8260652. DOI: 10.1155/2018/8260652.
|
[18] |
Kelly H, Benavente Y, Pavon MA, et al. Performance of DNA methylation assays for detection of high-grade cervical intraepithelial neoplasia (CIN2+): a systematic review and Meta-analysis[J]. Br J Cancer, 2019, 121(11): 954-965. DOI: 10.1038/s41416-019-0593-4.
|
[19] |
Au Yeung CL, Tsang WP, Tsang TY, et al. HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53[J]. Oncol Rep, 2010, 24(6): 1599-1604. DOI: 10.3892/or_00001023.
|
[20] |
Zhang J, Yang C, Wu C, et al. DNA methyltransferases in cancer: biology, paradox, aberrations, and targeted therapy[J]. Cancers (Basel), 2020,12(8): 2123. DOI: 10.3390/cancers12082123.
|
[21] |
Steenbergen RD, Ongenaert M, Snellenberg S, et al. Methylation-specific digital karyotyping of HPV16E6E7-expressing human keratinocytes identifies novel methylation events in cervical carcinogenesis[J]. J Pathol, 2013, 231(1): 53-62. DOI: 10.1002/path.4210.
|
[22] |
Bu Q, Wang S, Ma J, et al. The clinical significance of FAM19A4 methylation in high-risk HPV-positive cervical samples for the detection of cervical (pre)cancer in Chinese women[J]. BMC Cancer, 2018, 18(1): 1182. DOI: 10.1186/s12885-018-4877-5.
|
[23] |
Jee B, Yadav R, Pankaj S, et al. Immunology of HPV-mediated cervical cancer: current understanding[J]. Int Rev Immunol, 2020: 1-20. DOI: 10.1080/08830185.2020.1811859.
|
[24] |
Luttmer R, De Strooper LM, Steenbergen RD, et al. Management of high-risk HPV-positive women for detection of cervical (pre)cancer[J]. Expert Rev Mol Diagn, 2016, 16(9): 961-974. DOI: 10.1080/14737159.2016.1217157.
|
[25] |
Tom TY, Emtage P, Funk WD, et al. TAFA: a novel secreted family with conserved cysteine residues and restricted expression in the brain[J]. Genomics, 2004, 83(4): 727-734. DOI: 10.1016/j.ygeno.2003.10.006.
|
[26] |
Delfini M, Mantilleri A, Gaillard S, et al. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice[J]. Cell Rep, 2013, 5(2): 378-388. DOI: 10.1016/j.celrep.2013.09.013.
|
[27] |
Wang W, Li T, Wang X, et al. FAM19A4 is a novel cytokine ligand of formyl peptide receptor 1 (FPR1) and is able to promote the migration and phagocytosis of macrophages[J]. Cell Mol Immunol, 2015, 12(5): 615-624. DOI: 10.1038/cmi.2014.61.
|
[28] |
Shi X, Doycheva DM, Xu L, et al. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats[J]. Neurobiol Dis, 2016, 95: 111-121. DOI: 10.1016/j.nbd.2016.07.016.
|
[29] |
Vink MA, Bogaards JA, van Kemenade FJ, et al. Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time to preclinical cervical cancer from doubly censored national registry data[J]. Am J Epidemiol, 2013, 178(7): 1161-1169. DOI: 10.1093/aje/kwt077.
|
[30] |
Polman NJ, Snijders P, Kenter GG, et al. HPV-based cervical screening: rationale, expectations and future perspectives of the new Dutch screening programme[J]. Prev Med, 2019, 119: 108-117. DOI: 10.1016/j.ypmed.2018.12.021.
|
[31] |
Katki HA, Schiffman M, Castle PE, et al. Five-year risks of CIN 3+ and cervical cancer among women who test Pap-negative but are HPV-positive[J]. J Low Genit Tract Dis, 2013, 17(5 Suppl 1): S56-S63. DOI: 10.1097/LGT.0b013e318285437b.
|
[32] |
Bruinsma FJ, Quinn MA. The risk of preterm birth following treatment for precancerous changes in the cervix: a systematic review and Meta-analysis[J]. BJOG, 2011, 118(9): 1031-1041. DOI: 10.1111/j.1471-0528.2011.02944.x.
|
[33] |
Kremer WW, Berkhof J, Bleeker MC, et al. Role of FAM19A4/miR124-2 methylation analysis in predicting regression or nonregression of CIN2/3 lesions: a protocol of an observational longitudinal cohort study[J]. BMJ Open, 2019, 9(7): e29017. DOI: 10.1136/bmjopen-2019-029017.
|
[34] |
De Strooper LMA, Verhoef VMJ, Berkhof J, et al. Validation of the FAM19A4/mir124-2 DNA methylation test for both lavage-and brush-based self-samples to detect cervical (pre)cancer in HPV-positive women[J]. Gynecol Oncol, 2016, 141(2): 341-347. DOI: 10.1016/j.ygyno.2016.02.012.
|
[35] |
Hesselink AT, Heideman DAM, Steenbergen RDM, et al. Methylation marker analysis of self-sampled cervico-vaginal lavage specimens to triage high-risk HPV-positive women for colposcopy[J]. Int J Cancer, 2014, 135(4): 880-886. DOI: 10.1002/ijc.28723.
|
[36] |
Steenbergen RDM, Snijders PJF, Heideman DAM, et al. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions[J]. Nat Rev Cancer, 2014, 14(6): 395-405. DOI: 10.1038/nrc3728.
|
[37] |
Tainio K, Athanasiou A, Tikkinen K, et al. Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: systematic review and Meta-analysis[J]. BMJ, 2018, 360: k499. DOI: 10.1136/bmj.k499.
|
[38] |
|
[39] |
Kurokawa T, Yoshida Y, Iwanari O, et al. Implementation of primary HPV testing in Japan[J]. Mol Clin Oncol, 2020, 13(4): 22. DOI: 10.3892/mco.2020.2092.
|