Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (01): 23 -29. doi: 10.3877/cma.j.issn.1673-5250.2021.01.004

Special Issue:

Forum

Current research status of methylation quantification of FAM19A4 gene promoter in cervical cancer and its precancerous lesion screening

Lulu He, Qiaowen Bu, Jiaqi Luo, Jiating Gu, Xiping Luo()   

  • Received:2020-09-30 Revised:2021-01-03 Published:2021-02-01
  • Corresponding author: Xiping Luo
  • Supported by:
    Project of Science and Technology Department of Guangdong Province(2017ZC0317); Science and Technology Plan of Guangzhou(202002030174)

Cervical cancer is one of the most common gynecologic malignancies. At present, human papillomavirus (HPV) and cytological test are the main screening methods for cervical cancer and its precancerous lesions (CCPL). As the above traditional screening methods have the risk of missed diagnosis of CCPL, it is of great significance to find specific molecular markers that can effectively identify CCPL. Methylation quantification of family with sequence similarity 19 member A4 (FAM19A4) gene promoter can effectively detect CCPL tissues, with higher specificity than traditional screening methods, and is expected to be a specific molecular marker for screening CCPL. The authors intend to describe methylation quantification of FAM19A4 gene promoter in CCPL screening in order to provide ideas for further promoting the development of CCPL screening methods.

[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[2]
王临虹,赵更力. 中国子宫颈癌综合防控指南[J]. 中国妇幼健康研究,2018, 29(1): 1-3. DOI: 10.3969/j.issn.1673-5293.2018.01.001.
[3]
Vink FJ, Lissenberg-Witte BI, Meijer CJLM, et al. FAM19A4/miR124-2 methylation analysis as a triage test for HPV-positive women: cross-sectional and longitudinal data from a Dutch screening cohort[J]. Clinc Microbiol Infect, 2020: S1198-743X(20)30163-4. DOI: 10.1016/j.cmi.2020.03.018.
[4]
Koliopoulos G, Nyaga VN, Santesso N, et al. Cytology versus HPV testing for cervical cancer screening in the general population[J]. Cochrane Database Syst Rev, 2017, 8(8): CD008587. DOI: 10.1002/14651858.CD008587.pub2.
[5]
Bowden SJ, Lathouras K, Kyrgiou M. Can DNA methylation tests improve the accuracy of cervical screening?[J]. BJOG, 2021, 128(3): 515. DOI: 10.1111/1471-0528.16448.
[6]
布俏雯,张亮,王三锋,等. FAM19A4基因启动子甲基化检测在宫颈癌组织中的临床意义[J]. 实用医学杂志,2018, 34(9): 1541-1544, 1553. DOI: 10.3969/j.issn.1006-5725.2018.09.033.
[7]
De Strooper L, Berkhof J, Steenbergen R, et al. Cervical cancer risk in HPV-positive women after a negative FAM19A4/ mir124-2 methylation test: a post hoc analysis in the POBASCAM trial with 14 year follow-up[J]. Int J Cancer, 2018, 143(6): 1541-1548. DOI: 10.1002/ijc.31539.
[8]
De Strooper LMA, Meijer CJ, Berkhof J, et al. Methylation analysis of the FAM19A4 gene in cervical scrapes is highly efficient in detecting cervical carcinomas and advanced CIN2/3 lesions[J]. Cancer Prev Res (Phila), 2014, 7(12): 1251-1257. DOI: 10.1158/1940-6207.CAPR-14-0237.
[9]
Bao H, Zhang L, Wang L, et al. Significant variations in the cervical cancer screening rate in China by individual-level and geographical measures of socioeconomic status: a multilevel model analysis of a nationally representative survey dataset[J]. Cancer Med, 2018, 7(5): 2089-2100. DOI: 10.1002/cam4.1321.
[10]
Cuschieri K, Ronco G, Lorincz A, et al. Eurogin roadmap 2017: triage strategies for the management of HPV-positive women in cervical screening programs[J]. Int J Cancer, 2018, 143(4): 735-745. DOI: 10.1002/ijc.31261.
[11]
霍文婧,梁茂盛,韩存芝. 人乳头瘤病毒联合薄层液基细胞检查在子宫颈疾病筛查中的应用[J]. 肿瘤研究与临床,2016, 28(2): 103-106. DOI: 10.3760/cma.j.issn.1006-9801.2016.02.008.
[12]
赵君,赵媛. 液基细胞学与HPV分型联合检测对早期宫颈癌的筛查意义[J]. 实用癌症杂志,2018, 33(1): 143-146. DOI: 10.3969/j.issn.1001-5930.2018.01.044.
[13]
Lorincz AT. Virtues and weaknesses of DNA methylation as a test for cervical cancer prevention[J]. Acta Cytol, 2016, 60(6): 501-512. DOI: 10.1159/000450595.
[14]
Luttmer R, De Strooper LM, Berkhof J, et al. Comparing the performance of FAM19A4 methylation analysis, cytology and HPV16/18 genotyping for the detection of cervical (pre)cancer in high-risk HPV-positive women of a gynecologic outpatient population (COMETH study)[J]. Int J Cancer, 2016, 138(4): 992-1002. DOI: 10.1002/ijc.29824.
[15]
Vink FJ, Meijer C, Clifford GM, et al. FAM19A4/ miR124-2 methylation in invasive cervical cancer: a retrospective cross-sectional worldwide study[J]. Int J Cancer, 2019, 147(4): 1215-1221. DOI: 10.1002/ijc.32614.
[16]
Mac M, Moody CA. Epigenetic regulation of the human papillomavirus life cycle[J]. Pathogens, 2020, 9(6): 483. DOI: 10.3390/pathogens9060483.
[17]
Feng C, Dong J, Chang W, et al. The progress of methylation regulation in gene expression of cervical cancer[J]. Int J Genomics, 2018, 2018: 8260652. DOI: 10.1155/2018/8260652.
[18]
Kelly H, Benavente Y, Pavon MA, et al. Performance of DNA methylation assays for detection of high-grade cervical intraepithelial neoplasia (CIN2+): a systematic review and Meta-analysis[J]. Br J Cancer, 2019, 121(11): 954-965. DOI: 10.1038/s41416-019-0593-4.
[19]
Au Yeung CL, Tsang WP, Tsang TY, et al. HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53[J]. Oncol Rep, 2010, 24(6): 1599-1604. DOI: 10.3892/or_00001023.
[20]
Zhang J, Yang C, Wu C, et al. DNA methyltransferases in cancer: biology, paradox, aberrations, and targeted therapy[J]. Cancers (Basel), 2020,12(8): 2123. DOI: 10.3390/cancers12082123.
[21]
Steenbergen RD, Ongenaert M, Snellenberg S, et al. Methylation-specific digital karyotyping of HPV16E6E7-expressing human keratinocytes identifies novel methylation events in cervical carcinogenesis[J]. J Pathol, 2013, 231(1): 53-62. DOI: 10.1002/path.4210.
[22]
Bu Q, Wang S, Ma J, et al. The clinical significance of FAM19A4 methylation in high-risk HPV-positive cervical samples for the detection of cervical (pre)cancer in Chinese women[J]. BMC Cancer, 2018, 18(1): 1182. DOI: 10.1186/s12885-018-4877-5.
[23]
Jee B, Yadav R, Pankaj S, et al. Immunology of HPV-mediated cervical cancer: current understanding[J]. Int Rev Immunol, 2020: 1-20. DOI: 10.1080/08830185.2020.1811859.
[24]
Luttmer R, De Strooper LM, Steenbergen RD, et al. Management of high-risk HPV-positive women for detection of cervical (pre)cancer[J]. Expert Rev Mol Diagn, 2016, 16(9): 961-974. DOI: 10.1080/14737159.2016.1217157.
[25]
Tom TY, Emtage P, Funk WD, et al. TAFA: a novel secreted family with conserved cysteine residues and restricted expression in the brain[J]. Genomics, 2004, 83(4): 727-734. DOI: 10.1016/j.ygeno.2003.10.006.
[26]
Delfini M, Mantilleri A, Gaillard S, et al. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice[J]. Cell Rep, 2013, 5(2): 378-388. DOI: 10.1016/j.celrep.2013.09.013.
[27]
Wang W, Li T, Wang X, et al. FAM19A4 is a novel cytokine ligand of formyl peptide receptor 1 (FPR1) and is able to promote the migration and phagocytosis of macrophages[J]. Cell Mol Immunol, 2015, 12(5): 615-624. DOI: 10.1038/cmi.2014.61.
[28]
Shi X, Doycheva DM, Xu L, et al. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats[J]. Neurobiol Dis, 2016, 95: 111-121. DOI: 10.1016/j.nbd.2016.07.016.
[29]
Vink MA, Bogaards JA, van Kemenade FJ, et al. Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time to preclinical cervical cancer from doubly censored national registry data[J]. Am J Epidemiol, 2013, 178(7): 1161-1169. DOI: 10.1093/aje/kwt077.
[30]
Polman NJ, Snijders P, Kenter GG, et al. HPV-based cervical screening: rationale, expectations and future perspectives of the new Dutch screening programme[J]. Prev Med, 2019, 119: 108-117. DOI: 10.1016/j.ypmed.2018.12.021.
[31]
Katki HA, Schiffman M, Castle PE, et al. Five-year risks of CIN 3+ and cervical cancer among women who test Pap-negative but are HPV-positive[J]. J Low Genit Tract Dis, 2013, 17(5 Suppl 1): S56-S63. DOI: 10.1097/LGT.0b013e318285437b.
[32]
Bruinsma FJ, Quinn MA. The risk of preterm birth following treatment for precancerous changes in the cervix: a systematic review and Meta-analysis[J]. BJOG, 2011, 118(9): 1031-1041. DOI: 10.1111/j.1471-0528.2011.02944.x.
[33]
Kremer WW, Berkhof J, Bleeker MC, et al. Role of FAM19A4/miR124-2 methylation analysis in predicting regression or nonregression of CIN2/3 lesions: a protocol of an observational longitudinal cohort study[J]. BMJ Open, 2019, 9(7): e29017. DOI: 10.1136/bmjopen-2019-029017.
[34]
De Strooper LMA, Verhoef VMJ, Berkhof J, et al. Validation of the FAM19A4/mir124-2 DNA methylation test for both lavage-and brush-based self-samples to detect cervical (pre)cancer in HPV-positive women[J]. Gynecol Oncol, 2016, 141(2): 341-347. DOI: 10.1016/j.ygyno.2016.02.012.
[35]
Hesselink AT, Heideman DAM, Steenbergen RDM, et al. Methylation marker analysis of self-sampled cervico-vaginal lavage specimens to triage high-risk HPV-positive women for colposcopy[J]. Int J Cancer, 2014, 135(4): 880-886. DOI: 10.1002/ijc.28723.
[36]
Steenbergen RDM, Snijders PJF, Heideman DAM, et al. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions[J]. Nat Rev Cancer, 2014, 14(6): 395-405. DOI: 10.1038/nrc3728.
[37]
Tainio K, Athanasiou A, Tikkinen K, et al. Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: systematic review and Meta-analysis[J]. BMJ, 2018, 360: k499. DOI: 10.1136/bmj.k499.
[38]
伍恒英,彭苏珺,布俏雯,等. FAM19A4基因启动子甲基化在高危型HPV阴性宫颈癌诊断中的作用[J]. 实用医学杂志,2019, 35(5): 683-687. DOI: 10.3969/j.issn.1006-5725.2019.05.002.
[39]
Kurokawa T, Yoshida Y, Iwanari O, et al. Implementation of primary HPV testing in Japan[J]. Mol Clin Oncol, 2020, 13(4): 22. DOI: 10.3892/mco.2020.2092.
[1] Minrong Ma, Cong Li, Qin Zhou. Current research status of treatment of cervical cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 497-504.
[2] Changsheng Lin, Jun Zhan, Xue Xiao. Genetic testing and precision molecular targeted therapy in diagnosis and treatment of epithelial ovarian caner[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 505-510.
[3] Lu Wang, Yang Fan. Advances in endometrial cancer-related biomarker research[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 511-516.
[4] Juan Gu, Qingqing Sun, Fangfang Hu, Yijuan Cao, Yujuan Qi. Clinical application of endometrial receptivity array to improve pregnancy outcomes in women with repeated embryo implantation failure[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 582-587.
[5] Wenrong Dai, Lijuan Zhao, Zhihui Li. Research progress of influence of extracellular vesicles on embryo implantation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 616-620.
[6] Dongjie Zhou, Min Jiang, Hairui Fan, Lingling Gao, Xiang Kong, Dan Lu, Liping Wang. Current research progress on non-coding RNA in follicular development and maturation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 387-393.
[7] Huizhu Chen, Yingkun Guo, Xinrong Wang, Gang Ning, Xijian Chen. Current research status on the " dualistic model" of epithelial ovarian cancer and its molecular biology[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 394-402.
[8] Chunying Han, Tingting Wang, Yanyan Li, Jinxia Piao. Current research status on predictors of lymphatic vascular invasion in patients with endometrial carcinoma[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 403-409.
[9] Lili Lou, Hanmin Liu. Current research status of susceptibility genes and epigenetics on childhood asthma[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(03): 249-255.
[10] Zhaomin Zeng, Haiyan Yu. Clinical cognition of superfemale syndrome[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(02): 145-150.
[11] Quan Wei, Shen Zhang, Huijia Chen, Heng Zou, Lina Hu. Current research progress on correlation between female reproductive tract microbiota and assisted reproductive technology[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(02): 151-155.
[12] Yujie Xu, Guodong Zhao. Advances and challenges in the treatment of advanced gastric cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(04): 451-455.
[13] Xiaoyong Wei. Discussion on the focus issues of conversion therapy for primary liver cancer[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(06): 602-607.
[14] Ruiqi Zhang, Lijuan Zhang, Bin Sun. Progress in the epigenetics of thyroid associated ophthalmopathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(04): 226-230.
[15] Ying Liu, Man Yin, Linqing Yang, Yunfei Wang. Diagnostic characteristics of invasive stratified mucin-producing carcinoma and literature review[J]. Chinese Journal of Diagnostics(Electronic Edition), 2023, 11(03): 173-177.
Viewed
Full text


Abstract