[1] |
Rao C, Coyte KZ, Bainter W, et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants[J]. Nature, 2021, 591(7851): 633-638. DOI: 10.1038/s41586-021-03241-8.
|
[2] |
|
[3] |
Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 331-345. DOI: 10.1038/s41575-019-0121-2.
|
[4] |
Fuller MK. Pediatric inflammatory bowel disease: special considerations[J]. Surg Clin North Am, 2019, 99(6): 1177-1183. DOI: 10.1016/j.suc.2019.08.008.
|
[5] |
Jagt JZ, van Rheenen PF, Thoma SMA, et al. The top 10 research priorities for inflammatory bowel disease in children and young adults: results of a James Lind Alliance Priority Setting Partnership[J]. Lancet Gastroenterol Hepatol, 2023, 8(8): 690-691. DOI: 10.1016/S2468-1253(23)00140-1.
|
[6] |
Zhang F, Aschenbrenner D, Yoo JY, et al. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly[J]. Lancet Microbe, 2022, 3(12): e969-e983. DOI: 10.1016/S2666-5247(22)00203-8.
|
[7] |
|
[8] |
Sun Y, Zuo T, Cheung CP, et al. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China[J]. Gastroenterology, 2021, 160(1): 272-286.e11. DOI: 10.1053/j.gastro.2020.09.014.
|
[9] |
Schei K, Simpson MR, Avershina E, et al. Early gut fungal and bacterial microbiota and childhood growth[J]. Front Pediatr, 2020, 8: 572538. DOI: 10.3389/fped.2020.572538 .
|
[10] |
Willis KA, Purvis JH, Myers ED, et al. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age[J]. FASEB J, 2019, 33(11): 12825-12837. DOI: 10.1096/fj.201901436RR.
|
[11] |
Fauzan AH, Mejia JLC, Krych L, et al. Gut mycobiome dysbiosis is linked to hypertriglyceridemia among home dwelling elderly danes[J]. Cold Spring Harbor Laboratory, 2020. DOI: 10.1101/2020.04.16.044693.
|
[12] |
Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review[J]. Gastroenterology, 2022, 162(4): 1147-1159.e4. DOI: 10.1053/j.gastro.2021.12.282.
|
[13] |
Park J, Cheon JH. Incidence and prevalence of inflammatory bowel disease across Asia[J]. Yonsei Med J, 2021, 62(2): 99-108. DOI: 10.3349/ymj.2021.62.2.99.
|
[14] |
Wang XQ, Zhang Y, Xu CD, et al. Inflammatory bowel disease in Chinese children: a multicenter analysis over a decade from Shanghai[J]. Inflamm Bowel Dis, 2013, 19(2): 423-428. DOI: 10.1097/MIB.0b013e318286f9f2.
|
[15] |
Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis[J]. Science, 2012, 336(6086): 1314-1317. DOI: 10.1126/science.1221789.
|
[16] |
Wang T, Pan D, Zhou Z, et al. Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut[J]. PLoS Pathog, 2016, 12(6): e1005662. DOI: 10.1371/journal.ppat.1005662.
|
[17] |
Doron I, Leonardi I, Li XV, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies[J]. Cell, 2021, 184(4): 1017-1031.e14. DOI: 10.1016/j.cell.2021.01.016.
|
[18] |
Mogilnicka I, Ufnal M. Gut mycobiota and fungal metabolites in human homeostasis[J]. Curr Drug Targets, 2019, 20(2): 232-240. DOI: 10.2174/1389450119666180724125020.
|
[19] |
|
[20] |
Lam S, Zuo T, Ho M, et al. Review article: fungal alterations in inflammatory bowel diseases[J]. Aliment Pharmacol Ther, 2019, 50(11-12): 1159-1171. DOI: 10.1111/apt.15523.
|
[21] |
Qiu X, Zhao X, Cui X, et al. Characterization of fungal and bacterial dysbiosis in young adult Chinese patients with Crohn′s disease[J]. Therap Adv Gastroenterol, 2020, 13: 1756284820971202. DOI: 10.1177/1756284820971202.
|
[22] |
Yadav A, Yadav R, Sharma V, et al. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease[J]. Indian J Gastroenterol, 2024, 43(1): 112-128. DOI: 10.1007/s12664-023-01510-0.
|
[23] |
Liu S, Zhao W, Lan P, et al. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345. DOI: 10.1007/s13238-020-00745-3.
|
[24] |
Li XV, Leonardi I, Putzel GG, et al. Immune regulation by fungal strain diversity in inflammatory bowel disease[J]. Nature, 2022, 603(7902): 672-678. DOI: 10.1038/s41586-022-04502-w.
|
[25] |
Limon JJ, Tang J, Li D, et al. Malassezia is associated with Crohn′s disease and exacerbates colitis in mouse models[J]. Cell Host Microbe, 2019, 25(3): 377-388.e6. DOI: 10.1016/j.chom.2019.01.007.
|
[26] |
Zeng X, Li X, Yue Y, et al. Ameliorative effect of Saccharomyces cerevisiae JKSP39 on Fusobacterium nucleatum and dextran sulfate sodium-induced colitis mouse model[J]. J Agric Food Chem, 2022, 70(44): 14179-14192. DOI: 10.1021/acs.jafc.2c05338.
|
[27] |
Rodrigues M, Bueno C, Lomazi EA, et al. Classical serological markers in pediatric inflammatory bowel disease in Brazil[J]. Arq Gastroenterol, 2021, 58(4): 495-503. DOI: 10.1590/S0004-2803.202100000-89.
|
[28] |
Bourgonje AR, Vogl T, Segal E, et al. Antibody signatures in inflammatory bowel disease: current developments and future applications[J]. Trends Mol Med, 2022, 28(8): 693-705. DOI: 10.1016/j.molmed.2022.05.004 .
|
[29] |
Kim JM, Choi YM, Jung SA, et al. Diagnostic utility, disease activity, and disease phenotype correlation of serum ASCA, pANCA, and PR3-ANCA in pediatric inflammatory bowel disease[J]. J Pediatr (Rio J), 2024, 100(2): 204-211. DOI: 10.1016/j.jped.2023.10.005 .
|
[30] |
Duarte-Silva M, Afonso PC, de Souza PR, et al. Reappraisal of antibodies against Saccharomyces cerevisiae (ASCA) as persistent biomarkers in quiescent Crohn′s disease[J]. Autoimmunity, 2019, 52(1): 37-47. DOI: 10.1080/08916934.2019.1588889 .
|
[31] |
Gao X, Zhang Y. Serological markers facilitate the diagnosis of Crohn′s disease[J]. Postgrad Med, 2021, 133(3): 286-290. DOI: 10.1080/00325481.2021.1873649 .
|
[32] |
Ricciuto A, Aardoom M, Orlanski-Meyer E, et al. Predicting outcomes in pediatric Crohn′s disease for management optimization: systematic review and consensus statements from the pediatric inflammatory bowel disease-ahead program[J]. Gastroenterology, 2021, 160(1): 403-436.e26. DOI: 10.1053/j.gastro.2020.07.065.
|
[33] |
|
[34] |
|
[35] |
Huang X, Hu M, Sun T, et al. Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts[J]. Cell Host Microbe, 2023, 31(11): 1930-1943.e4. DOI: 10.1016/j.chom.2023.10.005.
|
[36] |
|
[37] |
Atreya R, Neurath MF. Biomarkers for Personalizing IBD therapy: the quest continues[J]. Clin Gastroenterol Hepatol, 2024: S1542-3565(24)00104-6. DOI: 10.1016/j.cgh.2024.01.026
|
[38] |
Jain U, Ver Heul1 AM, Xiong SS, et al. Debaryomyces is enriched in Crohn′s disease intestinal tissue and impairs healing in mice[J]. Science, 2021, 371(6534): 1154-1159. DOI: 10.1126/science.abd0919.
|
[39] |
Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 503-513. DOI: 10.1038/s41575-021-00441-5.
|
[40] |
Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial[J]. JAMA, 2019, 321(2): 156-164. DOI: 10.1001/jama.2018.20046.
|
[41] |
Pai N, Popov J, Hill L, et al. Results of the first pilot randomized controlled trial of fecal microbiota transplant in pediatric ulcerative colitis: lessons, limitations, and future prospects[J]. Gastroenterology, 2021, 161(2): 388-393.e3. DOI: 10.1053/j.gastro.2021.04.067.
|
[42] |
|
[43] |
Allegretti JR, Kelly CR, Grinspan A, et al. Inflammatory bowel disease outcomes following fecal microbiota transplantation for recurrent C. difficile infection[J]. Inflamm Bowel Dis, 2021, 27(9): 1371-1378. DOI: 10.1093/ibd/izaa283.
|
[44] |
Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection[J]. Nat Commun, 2018, 9(1): 3663. DOI: 10.1038/s41467-018-06103-6.
|
[45] |
Tian H, Zhang S, Qin H, et al. Long-term safety of faecal microbiota transplantation for gastrointestinal diseases in China[J]. Lancet Gastroenterol Hepatol, 2022, 7(8): 702-703. DOI: 10.1016/S2468-1253(22)00170-4.
|
[46] |
Pais P, Almeida V, Ylmaz M, et al. Saccharomyces boulardii: what makes it tick as successful probiotic?[J]. J Fungi: Open Access Mycol J, 2020, 6(2): 78. DOI: 10.3390/jof6020078.
|
[47] |
Li B, Zhang H, Shi L, et al. Saccharomyces boulardii alleviates DSS-induced intestinal barrier dysfunction and inflammation in humanized mice[J]. Food Funct, 2022, 13(1): 102-112. DOI: 10.1039/d1fo02752b.
|
[48] |
|
[49] |
Huo X, Li D, Wu F, et al. Cultivated human intestinal fungus Candida metapsilosis M2006B attenuates colitis by secreting acyclic sesquiterpenoids as FXR agonists[J]. Gut, 2022, 71(11): 2205-2217. DOI: 10.1136/gutjnl-2021-325413.
|
[50] |
Scott BM, Gutiérrez-Vázquez C, Sanmarco LM, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease[J]. Nat Med, 2021, 27(7): 1212-1222. DOI: 10.1038/s41591-021-01390-x.
|
[51] |
Chiaro TR, Soto R, Zac Stephens W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice[J]. Sci Transl Med, 2017, 9(380): eaaf9044. DOI: 10.1126/scitranslmed.aaf9044.
|