Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2020, Vol. 16 ›› Issue (02): 245 -248. doi: 10.3877/cma.j.issn.1673-5250.2020.02.018

Special Issue:

Review

Research progress of folate-related signaling pathways in cervical cancer

Wenhao Wang1, Hui Wang1, Min Hao1,()   

  1. 1. Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2019-12-01 Revised:2020-03-08 Published:2020-04-01
  • Corresponding author: Min Hao
  • About author:
    Corresponding author: Hao Min, Email:
  • Supported by:
    Public Welfare Industry Research Project of National Health and Family Planning Commission of China(201402010); Key Research and Development Program of Shanxi Province(201803D31121); Scientific Research Project of Health and Family Planning Commission of Shanxi Province(2018GW04)

Cervical cancer is one of the most common gynecological malignancies. Among female reproductive tract malignancies in the world, its incidence ranks first, and it is the second leading cause of cancer death among women aged 20-39 years old. At present, human papilloma virus (HPV) infection is the primary cause of cervical cancer. However, although the HPV infection rate is high, few people eventually develop into cervical cancer. The mechanisms that induce malignant transformation of HPV have not been fully elucidated. Folic acid may affect multiple signaling pathways, which in turn promotes the multi-directional differentiation potential of tumor cells, epithelial-mesenchymal transition (EMT), and aerobic glycolysis. It plays a vital role in tumorigenesis, tumor progression, and resistance to chemotherapy drugs. The authors intend to review the research progress of folate-related signaling pathways in cervical cancer to explore the pathogenesis of cervical cancer and improve the survival rate of cervical cancer patients.

[1]
乔友林,赵宇倩. 宫颈癌的流行病学现状和预防[J/CD]. 中华妇幼临床医学杂志(电子版),2015,11(2):141-147. DOI:10.3877/cma.j.issn.1673-5250.2015.02.001.
[2]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017 [J]. CA Cancer J Clin, 2017, 67(1): 7-30. DOI: 10.3322/caac.21387.
[3]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[4]
Bailey LB. Folate in health and disease [M]. 2nd ed. Boca Raton: CRC Press, 1995. DOI: 10.1007/978-1-4020-8831-5.
[5]
Liu HQ, Wang YH, Wang LL, et al. P16INK4A and survivin: diagnostic and prognostic markers in cervical intraepithelial neoplasia and cervical squamous cell carcinoma [J]. Exp Mol Pathol, 2015, 99(1): 44-49. DOI: 10.1016/j.yexmp.2015.04.004.
[6]
马晓晨,王金桃,程玉英,等. 膳食因素与宫颈癌关系的病例对照研究[J]. 中国公共卫生,2005, 21(3): 312-314. DOI: 10.3321/j.issn:1001-0580.2005.03.027.
[7]
Yang J, Yang A, Wang Z, et al. Interactions between serum folate and human papillomavirus with cervical intraepithelial neoplasia risk in a Chinese population-based study [J]. Am J Clin Nutr, 2018, 108(5): 1034-1042. DOI: 10.1093/ajcn/nqy160.
[8]
McMahon AP. More surprises in the Hedgehog signaling pathway [J]. Cell, 2000, 100(2): 185-188. DOI: 10.1016/s0092-8674(00)81555-x.
[9]
Wetmore C. Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models [J]. Curr Opin Genet Dev, 2003, 13(1): 34-42. DOI: 10.1016/s0959-437x(03)00002-9.
[10]
Sahebjam S, Siu LL, Razak AA. The utility of hedgehog signaling pathway inhibition for cancer [J]. Oncologist, 2012, 17(8): 1090-1099. DOI: 10.1634/theoncologist.2011-0450.
[11]
Jia Y, Wang Y, Xie J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation [J]. Arch Toxicol, 2015, 89(2): 179-191. DOI: 10.1007/s00204-014-1433-1.
[12]
Niewiadomski P, Niedzióka SM, Markiewicz ,et al. Gli proteins: regulation in development and cancer [J]. Cells, 2019, 8(2): 147. DOI: 10.3390/cells8020147.
[13]
Ruiz i Altaba A, Sánchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells [J]. Nat Rev Cancer, 2002, 2(5): 361-372. DOI: 10.1038/nrc796.
[14]
Matise MP, Joyner AL. Gli genes in development and cancer [J]. Oncogene, 1999, 18(55): 7852-7859. DOI: 10.1038/sj.onc.1203243.
[15]
Kim YI, Shirwadkar S, Choi SW, et al. Effects of dietary folate on DNA strand breaks within mutation-prone exons of the p53 gene in rat colon [J]. Gastroenterology, 2000, 119(1): 151-161. DOI: 10.1053/gast.2000.8518.
[16]
Chaudary N, Pintilie M, Hedley D, et al. Hedgehog inhibition enhances efficacy of radiation and cisplatin in orthotopic cervical cancer xenografts [J]. Br J Cancer, 2017, 116(1): 50-57. DOI: 10.1038/bjc.2016.383.
[17]
Zhang F, Ren CC, Liu L, et al. SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway [J]. J Cell Biochem, 2018, 119(5): 3829-3842. DOI: 10.1002/jcb.26414.
[18]
Katoh M, Katoh M. Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals [J]. Int J Oncol, 2009, 34(5): 1411-1415.
[19]
Xuan YH, Jung HS, Choi YL, et al. Enhanced expression of hedgehog signaling molecules in squamous cell carcinoma of uterine cervix and its precursor lesions [J]. Mod Pathol, 2006, 19(8): 1139-1147. DOI: 10.1038/modpathol.3800600.
[20]
Kitazawa S, Kitazawa R, Tamada H, et al. Promoter structure of human sonic hedgehog gene [J]. Biochim Biophys Acta, 1998, 1443(3): 358-363. DOI: 10.1016/s0167-4781(98)00243-7.
[21]
Feng HC, Lin JY, Hsu SH, et al. Low folate metabolic stress reprograms DNA methylation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers [J]. Int J Cancer, 2017, 141(12): 2537-2550. DOI: 10.1002/ijc.31008.
[22]
Wang TP, Hsu SH, Feng HC, et al. Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway [J]. Carcinogenesis, 2012, 33(6): 1158-1168. DOI: 10.1093/carcin/bgs138.
[23]
Chen WJ, Huang RS. Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers [J]. J Nutr Biochem, 2018, 53: 28-38. DOI: 10.1016/j.jnutbio.2017.10.001.
[24]
Zhang W, Wu X, Hu L, et al. Overexpression of human papillomavirus type 16 oncoproteins enhances epithelial-mesenchymal transition via STAT3 signaling pathway in non-small cell lung cancer cells [J]. Oncol Res, 2017, 25(5): 843-852. DOI: 10.3727/096504016X14813880882288.
[25]
Stamos JL, Weis WI. The β-catenin destruction complex [J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a007898. DOI: 10.1101/cshperspect.a007898.
[26]
Levine AJ, Oren M. The first 30 years of p53: growing ever more complex [J]. Nat Rev Cancer, 2009, 9(10): 749-758. DOI: 10.1038/nrc2723.
[27]
Miller JW, Ulrich CM. Folic acid and cancer--where are we today? [J]. Lancet, 2013, 381(9871): 974-976. DOI: 10.1016/S0140-6736(13)60110-5.
[28]
Zhang YF, Zhou L, Zhang HW, et al. Association between folate intake and the risk of lung cancer: a dose-response Meta-analysis of prospective studies [J]. PLoS One, 2014, 9(4): e93465. DOI: 10.1371/journal.pone.0093465.
[29]
Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling: diseases and therapies [J]. Nat Rev Genet, 2004, 5(9): 691-701. DOI: 10.1038/nrg1427.
[30]
Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers [J]. Nature, 1994, 368(6473): 753-756. DOI: 10.1038/368753a0.
[31]
Walker DG, Duan W, Popovic EA, et al. Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas [J]. Cancer Res, 1995, 55(1): 20-23.
[32]
D′Amico M, Wu K, Fu M, et al. The inhibitor of cyclin-dependent kinase 4a/alternative reading frame (INK4a/ARF) locus encoded proteins p16INK4a and p19ARF repress cyclin D1 transcription through distinct cis elements [J]. Cancer Res, 2004, 64(12): 4122-4130. DOI: 10.1158/0008-5472.CAN-03-2519.
[33]
Liao GD, Sellors JW, Sun HK, et al. p16INK4A immunohistochemical staining and predictive value for progression of cervical intraepithelial neoplasia grade 1: a prospective study in China [J]. Int J Cancer, 2014, 134(7): 1715-1724. DOI: 10.1002/ijc.28485.
[34]
Zhang Q, Kuhn L, Denny LA, et al. Impact of utilizing p16INK4A immunohistochemistry on estimated performance of three cervical cancer screening tests [J]. Int J Cancer, 2007, 120(2): 351-356. DOI: 10.1002/ijc.22172.
[35]
Piyathilake CJ, Macaluso M, Brill I, et al. Lower red blood cell folate enhances the HPV-16-associated risk of cervical intraepithelial neoplasia [J]. Nutrition, 2007, 23(3): 203-210. DOI: 10.1016/j.nut.2006.12.002.
[36]
齐永霞. 培美曲塞联合顺铂治疗宫颈癌的临床疗效观察[J/CD]. 实用妇科内分泌电子杂志,2019, 6(18): 79-80. DOI: 10.16484/j.cnki.issn2095-8803.2019.18.057.
[37]
Miller DS, Blessing JA, Bodurka DC, et al. Evaluation of pemetrexed (Alimta, LY231514) as second line chemotherapy in persistent or recurrent carcinoma of the cervix: a phase Ⅱ study of the Gynecologic Oncology Group [J]. Gynecol Oncol, 2008, 110(1): 65-70. DOI: 10.1016/j.ygyno.2008.03.009.
[38]
Goedhals L, van Wiyk AL, Smith BL, et al. Pemetrexed (Alimta, LY231514) demonstrates clinical activity in chemonaive patients with cervical cancer in a phase Ⅱ single-agent trial [J]. Int J Gynecol Cancer, 2006, 16(3): 1172-1178. DOI: 10.1111/j.1525-1438.2006.00451.x.
[39]
Eifel Patricia J, Winter Kathryn, Morris Mitchell, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01 [J]. J Clin Oncol, 2004, 22(5): 872-880. DOI: 10.1200/JCO.2004.07.197.
[1] Heng Fan, Min Sun, Jianhua Zhu. Protective effect of salidroside on septic acute kidney injury in rats by inhibiting phosphatidylinositol 3 kinase/protein kinase B/mammalian target of rapamycin signal pathway[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(03): 188-195.
[2] Shuqin Zhang, Lian Chen. Diagnosis and treatment of postpartum intrauterine retained products of conception[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 493-497.
[3] Jiechun Shi, Ziyu Fan, Yan Xing. Early warning efficiency of different screening methods on cervical adenocarcinoma in situ[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 575-581.
[4] Dan Tang, Xiaoxi Yao, Bowen Yang, Shaolong Xue, Mengyao Li, Liuxing Wei, Mingrong Xi. The impact of doublecortin-like kinase 1 on the clinical characteristics of endometrioid adenocarcinoma patients[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 582-590.
[5] Yi Wei, Yuxi Zhou, Ye Yang, Xiufeng Ling, Chun Zhao. Current research status on roles of microRNA on endometrial receptivity[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 266-270.
[6] Lin Lin, Simeng Tian, Yonghua Yu, Feifei Xu, Mingli Huang. Current research status on treatment of intrauterine adhesion by stem cells and their exosomes[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 271-275.
[7] Xin Li, Yi Wei, Juan Zhang, Juanjuan Zhang, Xiufeng Ling, Chun Zhao, Mianqiu Zhang. Influencing factors on clinical pregnancy outcomes of frozen-thaw embryo transfer cycle in women of advanced age[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 276-283.
[8] Jingyi Di, Yujiang Chen, Xinxin Chen, Wenxia Chen. Effect of stromal cell-derived factor 1 on macrophage polarization through PI3K/AKT1 signaling pathway[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(02): 89-95.
[9] Min Zhang, Jianhua Zhu, Yafang Miao, Jinrong Guo. Inhibitory effect and mechanism of sarsasapogenin on hepatocellular carcinoma HepG2 cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(06): 328-335.
[10] Jiacui Ji, Chunbin Sun, Enli Luo. Curcumin alleviates LPS-induced neuroinflammatory damage of microglia by regulating the NF-κB/NLRP3 pathway[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(04): 193-203.
[11] Bo Li, Xiuyan Ma, Jie Sun. Effect of lncRNA TINCR on the biological behavior of trophoblast HTR-8/SVneo cells and its mechanism[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(03): 167-172.
[12] Tuersunmaimaiti Abudusalamu·, Tuxun Tuerhongjiang·, Hao Wen. Liver ischemia-reperfusion injury and cGAS-STING signaling pathway[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(03): 394-397.
[13] Ying Jin, Xiaoxia Fu, Meiru Chen, Lu Yuan, Liyao Hao. CD147 promotes cell proliferation and reduces apoptosis in colon cancer cells by regulating the MAPK signaling pathway[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(05): 474-480.
[14] Pu Li, Xiujie Sheng. Management of pregnancy complicated with cervical cancer[J]. Chinese Journal of Obstetric Emergency(Electronic Edition), 2024, 13(04): 202-208.
[15] Qiuyi Chen, Xi Lin, Zhenyin Liu. Advances in the molecular mechanism of lymphatic malformations[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(04): 374-379.
Viewed
Full text


Abstract