Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2020, Vol. 16 ›› Issue (02): 245 -248. doi: 10.3877/cma.j.issn.1673-5250.2020.02.018

Special Issue:

Review

Research progress of folate-related signaling pathways in cervical cancer

Wenhao Wang1, Hui Wang1, Min Hao1,()   

  1. 1. Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2019-12-01 Revised:2020-03-08 Published:2020-04-01
  • Corresponding author: Min Hao
  • About author:
    Corresponding author: Hao Min, Email:
  • Supported by:
    Public Welfare Industry Research Project of National Health and Family Planning Commission of China(201402010); Key Research and Development Program of Shanxi Province(201803D31121); Scientific Research Project of Health and Family Planning Commission of Shanxi Province(2018GW04)

Cervical cancer is one of the most common gynecological malignancies. Among female reproductive tract malignancies in the world, its incidence ranks first, and it is the second leading cause of cancer death among women aged 20-39 years old. At present, human papilloma virus (HPV) infection is the primary cause of cervical cancer. However, although the HPV infection rate is high, few people eventually develop into cervical cancer. The mechanisms that induce malignant transformation of HPV have not been fully elucidated. Folic acid may affect multiple signaling pathways, which in turn promotes the multi-directional differentiation potential of tumor cells, epithelial-mesenchymal transition (EMT), and aerobic glycolysis. It plays a vital role in tumorigenesis, tumor progression, and resistance to chemotherapy drugs. The authors intend to review the research progress of folate-related signaling pathways in cervical cancer to explore the pathogenesis of cervical cancer and improve the survival rate of cervical cancer patients.

[1]
乔友林,赵宇倩. 宫颈癌的流行病学现状和预防[J/CD]. 中华妇幼临床医学杂志(电子版),2015,11(2):141-147. DOI:10.3877/cma.j.issn.1673-5250.2015.02.001.
[2]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017 [J]. CA Cancer J Clin, 2017, 67(1): 7-30. DOI: 10.3322/caac.21387.
[3]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[4]
Bailey LB. Folate in health and disease [M]. 2nd ed. Boca Raton: CRC Press, 1995. DOI: 10.1007/978-1-4020-8831-5.
[5]
Liu HQ, Wang YH, Wang LL, et al. P16INK4A and survivin: diagnostic and prognostic markers in cervical intraepithelial neoplasia and cervical squamous cell carcinoma [J]. Exp Mol Pathol, 2015, 99(1): 44-49. DOI: 10.1016/j.yexmp.2015.04.004.
[6]
马晓晨,王金桃,程玉英,等. 膳食因素与宫颈癌关系的病例对照研究[J]. 中国公共卫生,2005, 21(3): 312-314. DOI: 10.3321/j.issn:1001-0580.2005.03.027.
[7]
Yang J, Yang A, Wang Z, et al. Interactions between serum folate and human papillomavirus with cervical intraepithelial neoplasia risk in a Chinese population-based study [J]. Am J Clin Nutr, 2018, 108(5): 1034-1042. DOI: 10.1093/ajcn/nqy160.
[8]
McMahon AP. More surprises in the Hedgehog signaling pathway [J]. Cell, 2000, 100(2): 185-188. DOI: 10.1016/s0092-8674(00)81555-x.
[9]
Wetmore C. Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models [J]. Curr Opin Genet Dev, 2003, 13(1): 34-42. DOI: 10.1016/s0959-437x(03)00002-9.
[10]
Sahebjam S, Siu LL, Razak AA. The utility of hedgehog signaling pathway inhibition for cancer [J]. Oncologist, 2012, 17(8): 1090-1099. DOI: 10.1634/theoncologist.2011-0450.
[11]
Jia Y, Wang Y, Xie J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation [J]. Arch Toxicol, 2015, 89(2): 179-191. DOI: 10.1007/s00204-014-1433-1.
[12]
Niewiadomski P, Niedzióka SM, Markiewicz ,et al. Gli proteins: regulation in development and cancer [J]. Cells, 2019, 8(2): 147. DOI: 10.3390/cells8020147.
[13]
Ruiz i Altaba A, Sánchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells [J]. Nat Rev Cancer, 2002, 2(5): 361-372. DOI: 10.1038/nrc796.
[14]
Matise MP, Joyner AL. Gli genes in development and cancer [J]. Oncogene, 1999, 18(55): 7852-7859. DOI: 10.1038/sj.onc.1203243.
[15]
Kim YI, Shirwadkar S, Choi SW, et al. Effects of dietary folate on DNA strand breaks within mutation-prone exons of the p53 gene in rat colon [J]. Gastroenterology, 2000, 119(1): 151-161. DOI: 10.1053/gast.2000.8518.
[16]
Chaudary N, Pintilie M, Hedley D, et al. Hedgehog inhibition enhances efficacy of radiation and cisplatin in orthotopic cervical cancer xenografts [J]. Br J Cancer, 2017, 116(1): 50-57. DOI: 10.1038/bjc.2016.383.
[17]
Zhang F, Ren CC, Liu L, et al. SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway [J]. J Cell Biochem, 2018, 119(5): 3829-3842. DOI: 10.1002/jcb.26414.
[18]
Katoh M, Katoh M. Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals [J]. Int J Oncol, 2009, 34(5): 1411-1415.
[19]
Xuan YH, Jung HS, Choi YL, et al. Enhanced expression of hedgehog signaling molecules in squamous cell carcinoma of uterine cervix and its precursor lesions [J]. Mod Pathol, 2006, 19(8): 1139-1147. DOI: 10.1038/modpathol.3800600.
[20]
Kitazawa S, Kitazawa R, Tamada H, et al. Promoter structure of human sonic hedgehog gene [J]. Biochim Biophys Acta, 1998, 1443(3): 358-363. DOI: 10.1016/s0167-4781(98)00243-7.
[21]
Feng HC, Lin JY, Hsu SH, et al. Low folate metabolic stress reprograms DNA methylation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers [J]. Int J Cancer, 2017, 141(12): 2537-2550. DOI: 10.1002/ijc.31008.
[22]
Wang TP, Hsu SH, Feng HC, et al. Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway [J]. Carcinogenesis, 2012, 33(6): 1158-1168. DOI: 10.1093/carcin/bgs138.
[23]
Chen WJ, Huang RS. Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers [J]. J Nutr Biochem, 2018, 53: 28-38. DOI: 10.1016/j.jnutbio.2017.10.001.
[24]
Zhang W, Wu X, Hu L, et al. Overexpression of human papillomavirus type 16 oncoproteins enhances epithelial-mesenchymal transition via STAT3 signaling pathway in non-small cell lung cancer cells [J]. Oncol Res, 2017, 25(5): 843-852. DOI: 10.3727/096504016X14813880882288.
[25]
Stamos JL, Weis WI. The β-catenin destruction complex [J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a007898. DOI: 10.1101/cshperspect.a007898.
[26]
Levine AJ, Oren M. The first 30 years of p53: growing ever more complex [J]. Nat Rev Cancer, 2009, 9(10): 749-758. DOI: 10.1038/nrc2723.
[27]
Miller JW, Ulrich CM. Folic acid and cancer--where are we today? [J]. Lancet, 2013, 381(9871): 974-976. DOI: 10.1016/S0140-6736(13)60110-5.
[28]
Zhang YF, Zhou L, Zhang HW, et al. Association between folate intake and the risk of lung cancer: a dose-response Meta-analysis of prospective studies [J]. PLoS One, 2014, 9(4): e93465. DOI: 10.1371/journal.pone.0093465.
[29]
Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling: diseases and therapies [J]. Nat Rev Genet, 2004, 5(9): 691-701. DOI: 10.1038/nrg1427.
[30]
Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers [J]. Nature, 1994, 368(6473): 753-756. DOI: 10.1038/368753a0.
[31]
Walker DG, Duan W, Popovic EA, et al. Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas [J]. Cancer Res, 1995, 55(1): 20-23.
[32]
D′Amico M, Wu K, Fu M, et al. The inhibitor of cyclin-dependent kinase 4a/alternative reading frame (INK4a/ARF) locus encoded proteins p16INK4a and p19ARF repress cyclin D1 transcription through distinct cis elements [J]. Cancer Res, 2004, 64(12): 4122-4130. DOI: 10.1158/0008-5472.CAN-03-2519.
[33]
Liao GD, Sellors JW, Sun HK, et al. p16INK4A immunohistochemical staining and predictive value for progression of cervical intraepithelial neoplasia grade 1: a prospective study in China [J]. Int J Cancer, 2014, 134(7): 1715-1724. DOI: 10.1002/ijc.28485.
[34]
Zhang Q, Kuhn L, Denny LA, et al. Impact of utilizing p16INK4A immunohistochemistry on estimated performance of three cervical cancer screening tests [J]. Int J Cancer, 2007, 120(2): 351-356. DOI: 10.1002/ijc.22172.
[35]
Piyathilake CJ, Macaluso M, Brill I, et al. Lower red blood cell folate enhances the HPV-16-associated risk of cervical intraepithelial neoplasia [J]. Nutrition, 2007, 23(3): 203-210. DOI: 10.1016/j.nut.2006.12.002.
[36]
齐永霞. 培美曲塞联合顺铂治疗宫颈癌的临床疗效观察[J/CD]. 实用妇科内分泌电子杂志,2019, 6(18): 79-80. DOI: 10.16484/j.cnki.issn2095-8803.2019.18.057.
[37]
Miller DS, Blessing JA, Bodurka DC, et al. Evaluation of pemetrexed (Alimta, LY231514) as second line chemotherapy in persistent or recurrent carcinoma of the cervix: a phase Ⅱ study of the Gynecologic Oncology Group [J]. Gynecol Oncol, 2008, 110(1): 65-70. DOI: 10.1016/j.ygyno.2008.03.009.
[38]
Goedhals L, van Wiyk AL, Smith BL, et al. Pemetrexed (Alimta, LY231514) demonstrates clinical activity in chemonaive patients with cervical cancer in a phase Ⅱ single-agent trial [J]. Int J Gynecol Cancer, 2006, 16(3): 1172-1178. DOI: 10.1111/j.1525-1438.2006.00451.x.
[39]
Eifel Patricia J, Winter Kathryn, Morris Mitchell, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01 [J]. J Clin Oncol, 2004, 22(5): 872-880. DOI: 10.1200/JCO.2004.07.197.
[1] Minrong Ma, Cong Li, Qin Zhou. Current research status of treatment of cervical cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 497-504.
[2] Changsheng Lin, Jun Zhan, Xue Xiao. Genetic testing and precision molecular targeted therapy in diagnosis and treatment of epithelial ovarian caner[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 505-510.
[3] Juan Gu, Qingqing Sun, Fangfang Hu, Yijuan Cao, Yujuan Qi. Clinical application of endometrial receptivity array to improve pregnancy outcomes in women with repeated embryo implantation failure[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 582-587.
[4] Wenrong Dai, Lijuan Zhao, Zhihui Li. Research progress of influence of extracellular vesicles on embryo implantation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 616-620.
[5] Dongjie Zhou, Min Jiang, Hairui Fan, Lingling Gao, Xiang Kong, Dan Lu, Liping Wang. Current research progress on non-coding RNA in follicular development and maturation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 387-393.
[6] Huizhu Chen, Yingkun Guo, Xinrong Wang, Gang Ning, Xijian Chen. Current research status on the " dualistic model" of epithelial ovarian cancer and its molecular biology[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 394-402.
[7] Chunying Han, Tingting Wang, Yanyan Li, Jinxia Piao. Current research status on predictors of lymphatic vascular invasion in patients with endometrial carcinoma[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 403-409.
[8] Xiang Wang, Liangyi Chen, Fengwei Yu, Zhengxi Wang, Qiutong Li, Yuhong Li. Development of bone morphogenetic protein in skin wound repair[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(02): 101-107.
[9] Shan Wang, Qing Ma, Lan Yao, Huayu Yang. Correlation between folic acid therapy and serum level of miR-150-5p in elderly patients undergoing maintenance hemodialysis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(03): 139-144.
[10] Feng Ying, Jing Wang, Xueqing Liu, Xiao Li. The effects of aquaporin 1 on the proliferation, migration, and apoptosis of human corneal endothelial cells[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(03): 146-151.
[11] Zechao Zhu, Xinyu Yang, Youcheng Li, Pengyu Pan, Guobiao Liang. Impact of genistein on early brain injury following subarachnoid hemorrhage in mice via the SIRT1/p53 signaling pathway[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(05): 261-269.
[12] Siyu Yang, Jingjing Yang, Ping Zhang, Qiao Liu, Jie Wu, Xiangjin Huang, Yijie Wang, Jingyun Fu. Leptin modulates α1-adrenergic receptor-mediated CaMKK-AMPKα signaling in GT1-7 cells[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(05): 569-574.
[13] Mi Li, huajuan Qiu, Yanqin Ji, Minghui Zhou. Effect of P16 and Ki67 expression and viral load detection on outcome of cervical lesions in woman of childbearing age with cervical intraepithelial neoplasia grade Ⅱ complicated with high-risk human papillomavirus infection[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(03): 272-278.
[14] Yu Qin, Miao Yang, Kai Chang, Shuning. Wang. Analysis of the current situation of human papillomavirus infection in females in Shanxi Province[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2023, 11(02): 105-108.
[15] Ying Liu, Man Yin, Linqing Yang, Yunfei Wang. Diagnostic characteristics of invasive stratified mucin-producing carcinoma and literature review[J]. Chinese Journal of Diagnostics(Electronic Edition), 2023, 11(03): 173-177.
Viewed
Full text


Abstract