Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2023, Vol. 19 ›› Issue (04): 387 -393. doi: 10.3877/cma.j.issn.1673-5250.2023.04.003

Forum

Current research progress on non-coding RNA in follicular development and maturation

Dongjie Zhou, Min Jiang, Hairui Fan, Lingling Gao, Xiang Kong, Dan Lu, Liping Wang()   

  1. Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
    Yangzhou University College of Animal Science and Technology, Yangzhou 225001, Jiangsu Province, China
    Department of Biobank, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
  • Received:2023-01-30 Revised:2023-06-06 Published:2023-08-01
  • Corresponding author: Liping Wang
  • Supported by:
    National Natural Science Foundation of China(82001512); General Project of Jiangsu Science and Technology Plan(BK20211118); General Project of Medical Scientific Research of Jiangsu Provincial Health Commission(M2021044); Maternal and Child Health Research Project of Jiangsu Province(F201945)

In the 21st century, development of high-throughput sequencing technologies and molecular biology research techniques and methods for non-coding RNA (ncRNA) have further promoted the discovery of ncRNA. Epigenetically related ncRNA include microRNAs (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), etc., however, these ncRNA are not act directly as carriers of genetic information, but involved in life activities of granulosa cells (GC)and oocytes by regulating expression of genes such as BMP15 and GDF9. ncRNA plays an important regulatory role in GC proliferation and apoptosis, oocyte development and maturation, and may play a role in regulating disease progression in pathogenesis of polycystic ovary syndrome (PCOS) related diseases. The authors intend to present the latest research progresses on ncRNA in follicular development and maturation, aiming to explore the role of ncRNA in follicular development and its mechanism, which may provide new ideas for prevention, early diagnosis and treatment of POCS and other related reproductive diseases. The authors intend to present the latest research progress on the role of ncRNA in follicular development and maturation, and its mechanism, aiming at providing new ideas for prevention, early diagnosis and treatment of POCS and other related reproductive system diseases.

[1]
阮鑫,董晓英. 卵泡发育过程中的细胞间通讯[J]. 医学研究杂志2022, 51(6): 177-180. DOI: 10.11969/j.issn.1673-548X.2022.06.037.
[2]
孙艳美,王喜艳,吴迪,等. 小RNA调控卵泡发育的研究进展[J]. 中国医学科学院学报2021, 43(5): 815-821. DOI: 10.3881/j.issn.1000-503X.12683.
[3]
包云,柴娟,卢俏俏,等. 改善卵母细胞体外成熟结局的研究进展[J]. 医药前沿2020, 10(18): 10-11.
[4]
Hu L, Liu Y, Dong P, et al. Protective effect of wuzibushen recipe on follicular development via regulating androgen receptor in polycystic ovary syndrome model rats[J]. Gynecol Endocrinol, 2023, 39(1): 2190808. DOI: 10.1080/09513590.2023.2190808.
[5]
Yang YZ, Zhang M, Mu S, et al. Clinical application of double ovulation stimulation in patients with diminished ovarian reserve and asynchronous follicular development undergoing assisted reproduction technology[J]. Curr Med Sci, 2023, 43(2): 304-312. DOI: 10.1007/s11596-022-2687-0.
[6]
Ruohonen ST, Gaytan F, Usseglio Gaudi A, et al. Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure[J].Hum Reprod Oxf Engl, 2022, 37(4): 806-821. DOI: 10.1093/humrep/deab287.
[7]
李子涵,张宁,张建霞,等. 非编码RNA在生殖领域的研究进展[J]. 中国优生与遗传杂志2018, 26(7): 1-4. DOI: 10.13404/j.cnki.cjbhh.2018.07.001.
[8]
Li X, Zhu L, Luo Y. Long non-coding RNA HLA-F antisense RNA 1 inhibits the maturation of microRNA-613 in polycystic ovary syndrome to promote ovarian granulosa cell proliferation and inhibit cell apoptosis[J]. Bioengineered, 2022, 13(5): 12289-12297. DOI: 10.1080/21655979.2022.2070965.
[9]
苗卉. miR-17-5p/20, miR-93-5p, miR-106-5p及FOXJ2在细胞周期中的作用研究[J]. 长治医学院学报2019, 33(5): 397-400. DOI: 10.3969/j.issn.1006-0588.2019.05.020.
[10]
冯光杭,江声伟,李耀坤,等. miRNA调控动物卵泡发育研究进展[J]. 中国畜牧兽医2021, 48(11): 4133-4142. DOI: 10.16431/j.cnki.1671-7236.2021.11.023.
[11]
Sun X, Klinger FG, Liu J, et al. MiR-378-3p maintains the size of mouse primordial follicle pool by regulating cell autophagy and apoptosis[J].Cell Death Dis, 2020, 11(9): 737. DOI: 10.1038/s41419-020-02965-1.
[12]
Zhang Y, Han D, Yu X, et al.MiRNA-190a-5p promotes primordial follicle hyperactivation by targeting PHLPP1 in premature ovarian failure[J]. Front Genet, 2022, 13: 1034832. DOI: 10.3389/fgene.2022.1034832.
[13]
李暄,佟俊硕,张大崇,等. miRNA调节卵泡颗粒细胞凋亡及其机制的研究进展[J]. 中国畜牧兽医2021, 48(12): 4429-4441. DOI: 10.16431/j.cnki.1671-7236.2021.12.011.
[14]
Andreas E, Pandey HO, Hoelker M, et al. The regulatory role of miR-20a in bovine cumulus cells and its contribution to oocyte maturation[J]. Zygote, 2021, 29(6): 435-444. DOI: 10.1017/S0967199420000933.
[15]
Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, et al. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development[J]. Dev Biol, 2021, 480: 69-77. DOI: 10.1016/j.ydbio.2021.08.008.
[16]
Zhang S, Wang L, Wang L, et al. MiR-17-5p affects porcine granulosa cell growth and oestradiol synthesis by targeting E2F1 gene[J]. Reprod Dom Anim, 2019, 54(11): 1459-1469. DOI: 10.1111/rda.13551.
[17]
Gao L, Wang S, Xu J, et al. SET improved oocyte maturation by serine/threonine protein phosphatase 2A and inhibited oocyte apoptosis in mouse oocytes[J].Reprod Biol, 2022, 22(3): 100668. DOI: 10.1016/j.repbio.2022.100668.
[18]
Hale BJ, Li Y, Adur MK, et al. Inhibition of germinal vesicle breakdown using IBMX increases microRNA-21 in the porcine oocyte[J]. Reprod Biol Endocrinol, 2020, 18(1): 39. DOI: 10.1186/s12958-020-00603-1.
[19]
Jenabi M, Khodarahmi P, Tafvizi F, et al. Evaluation of the potential of miR-21 as a diagnostic marker for oocyte maturity and embryo quality in women undergoing ICSI[J]. Sci Rep, 2023, 13(1): 1440. DOI: 10.1038/s41598-023-28686-x.
[20]
Wei L, Yang X, Gao L, et al. Comparison of miRNA landscapes between the human oocytes with or without arrested development[J].J Assist Reprod Genet, 2022, 39(10): 2227-2237. DOI: 10.1007/s10815-022-02614-w.
[21]
Sun M, Kraus WL. Minireview: long noncoding RNAs: new links between gene expression and cellular outcomes in endocrinology[J]. Mol Endocrinol, 2013, 27(9): 1390-1402. DOI: 10.1210/me.2013-1113.
[22]
孙哲,孙贇. 长链非编码RNA在多囊卵巢综合征中的作用及分子机制[J]. 中华生殖与避孕杂志2022, 42(3): 306-310. DOI: 10.3760/cma.j.cn101441-20200716-00397.
[23]
Huang X, Pan J, Wu B, et al. Construction and analysis of a lncRNA (PWRN2)-mediated ceRNA network reveal its potential roles in oocyte nuclear maturation of patients with PCOS[J]. Reprod Biol Endocrinol, 2018, 16(1): 73. DOI: 10.1186/s12958-018-0392-4.
[24]
Caponnetto A, Battaglia R, Ferrara C, et al. Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells[J]. J Assist Reprod Genet, 2022, 39(4): 919-931. DOI: 10.1007/s10815-022-02446-8.
[25]
Li Y, Zhang J, Liu YD, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome[J]. RNA Biol, 2020, 17(12): 1798-1810. DOI: 10.1080/15476286.2020.1783850.
[26]
张燕迪,任红艳,毕延震. LncRNA对胚胎发育的影响[J]. 湖北农业科学2021, 60(21): 26-32;26-29, 32. DOI: 10.14088/j.cnki.issn0439-8114.2021.21.005.
[27]
Yang CX, Wang PC, Liu S, et al. Long noncoding RNA 2193 regulates meiosis through global epigenetic modification and cytoskeleton organization in pig oocytes[J].J Cell Physiol, 2020, 235(11): 8304-8318. DOI: 10.1002/jcp.29675.
[28]
Jiao Y, Gao B, Wang G, et al. The key long non-coding RNA screening and validation between germinal vesicle and metaphase II of porcine oocyte in vitro maturation[J]. Reprod Dom Anim, 2020, 55(3): 351-363. DOI: 10.1111/rda.13620.
[29]
Wei L, Xia H, Liang Z, et al. Disrupted expression of long non-coding RNAs in the human oocyte: the possible epigenetic culprits leading to recurrent oocyte maturation arrest[J]. J Assist Reprod Genet, 2022, 39(10): 2215-2225. DOI: 10.1007/s10815-022-02596-9.
[30]
Cao Z, Gao D, Xu T, et al. Circular RNA profiling in the oocyte and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation[J]. Aging (Albany NY), 2019, 11(18): 8015-8034. DOI: 10.18632/aging.102315.
[31]
Li HM, Ma XL, Li HG. Intriguing circles: conflicts and controversies in circular RNA research[J]. Wiley Interdiscip Rev RNA, 2019, 10(5): e1538. DOI: 10.1002/wrna.1538.
[32]
Cai Y, Lei X, Chen Z, et al. The roles of cirRNA in the development of germ cells[J].Acta Histochem, 2020, 122(3): 151506. DOI: 10.1016/j.acthis.2020.151506.
[33]
尚芝群,李翰林,陈宣蓉,等. 恶性肿瘤中环状RNA分子机制以及在前列腺癌中的研究进展[J]. 临床泌尿外科杂志2019, 34(10): 835-838. DOI: 10.13201/j.issn.1001-1420.2019.10.019.
[34]
Ma M, Wang H, Zhang Y, et al. CircRNA-mediated inhibin-activin balance regulation in ovarian granulosa cell apoptosis and follicular atresia[J]. Int J Mol Sci, 2021, 22(17): 9113. DOI: 10.3390/ijms22179113.
[35]
Guo T, Zhang J, Yao W, et al. CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles[J].Biochim Biophys Acta BBA Gene Regul Mech, 2019, 1862(10): 194420. DOI: 10.1016/j.bbagrm.2019.194420.
[36]
Cai H, Chang T, Li Y, et al. Circular DDX10 is associated with ovarian function and assisted reproductive technology outcomes through modulating the proliferation and steroidogenesis of granulosa cells[J]. Aging (Albany NY), 2021, 13(7): 9592-9612. DOI: 10.18632/aging.202699.
[37]
Ma Z, Zhao H, Zhang Y, et al. Novel circular RNA expression in the cumulus cells of patients with polycystic ovary syndrome[J].Arch Gynecol Obstet, 2019, 299(6): 1715-1725. DOI: 10.1007/s00404-019-05122-y.
[38]
Zhou W, Zhang T, Lian Y, et al. Exosomal lncRNA and mRNA profiles in polycystic ovary syndrome: bioinformatic analysis reveals disease-related networks[J]. Reprod Biomed Online, 2022, 44(5): 777-790. DOI: 10.1016/j.rbmo.2022.01.007.
[39]
Zhu HL, Chen YQ, Zhang ZF. Downregulation of lncRNA ZFAS1 and upregulation of microRNA-129 repress endocrine disturbance, increase proliferation and inhibit apoptosis of ovarian granulosa cells in polycystic ovarian syndrome by downregulating HMGB1[J]. Genomics, 2020, 112(5): 3597-3608. DOI: 10.1016/j.ygeno.2020.04.011.
[40]
Chen Y, Miao J, Lou G. Knockdown of circ-FURIN suppresses the proliferation and induces apoptosis of granular cells in polycystic ovary syndrome via miR-195-5p/BCL2 axis[J].J Ovarian Res, 2021, 14(1): 156. DOI: 10.1186/s13048-021-00891-0.
[41]
Lu J, Xue Y, Wang Y, et al. CiRS-126 inhibits proliferation of ovarian granulosa cells through targeting the miR-21-PDCD4-ROS axis in a polycystic ovarian syndrome model[J]. Cell Tissue Res, 2020, 381(1): 189-201. DOI: 10.1007/s00441-020-03187-9.
[42]
Zhou Z, Tu Z, Zhang J, et al. Follicularfluid-derived exosomal microRNA-18b-5p regulates PTEN-mediated PI3K/akt/mTOR signaling pathway to inhibit polycystic ovary syndrome development[J]. Mol Neurobiol, 2022, 59(4): 2520-2531. DOI: 10.1007/s12035-021-02714-1.
[43]
卫玲,张燕,陈晓娟. LINC00511调控NF-κB通路对多囊卵巢综合征卵巢颗粒细胞凋亡和炎性反应的影响[J]. 河北医药2022, 44(16): 2435-2438. DOI: 10.3969/j.issn.1002-7386.2022.16.007.
[44]
Zhang C, Liu J, Lai M, et al. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome[J].Arch Gynecol Obstet, 2019, 300(2): 431-440. DOI: 10.1007/s00404-019-05129-5.
[1] Shuqin Zhang, Lian Chen. Diagnosis and treatment of postpartum intrauterine retained products of conception[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 493-497.
[2] Jiechun Shi, Ziyu Fan, Yan Xing. Early warning efficiency of different screening methods on cervical adenocarcinoma in situ[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 575-581.
[3] Dan Tang, Xiaoxi Yao, Bowen Yang, Shaolong Xue, Mengyao Li, Liuxing Wei, Mingrong Xi. The impact of doublecortin-like kinase 1 on the clinical characteristics of endometrioid adenocarcinoma patients[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 582-590.
[4] Yi Wei, Yuxi Zhou, Ye Yang, Xiufeng Ling, Chun Zhao. Current research status on roles of microRNA on endometrial receptivity[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 266-270.
[5] Lin Lin, Simeng Tian, Yonghua Yu, Feifei Xu, Mingli Huang. Current research status on treatment of intrauterine adhesion by stem cells and their exosomes[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 271-275.
[6] Xin Li, Yi Wei, Juan Zhang, Juanjuan Zhang, Xiufeng Ling, Chun Zhao, Mianqiu Zhang. Influencing factors on clinical pregnancy outcomes of frozen-thaw embryo transfer cycle in women of advanced age[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 276-283.
[7] Weicong Gao, Li Li, Zhonghua Zhang, Xianghui Zhu, Suqiao Liu. Impact of impaired glucose regulation on recurrence within 2 years after modified radical surgery in patients with cervical cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(02): 231-237.
[8] Yuping Li, Hui Ma, Hang Yu. Clinical efficacy of laparoscopic uterine artery ligation combined with myomectomy for the treatment of uterine fibroids[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(02): 238-244.
[9] Lin Yang, Rutie Yin. Current research status on etiology and treatment of patients with white lesions of vulva[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(02): 157-165.
[10] Li Wang, Yueying Wang, Fen Zhou, Yukun Guo, Lina Wei. Current research status in effect of gonadotropin-releasing hormone antagonist on endometrial receptivity[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 629-635.
[11] Likun Wei, Xuhong Zhang, Ying Luo, Fengxia Xue, Yingmei Wang, Xueru Song, Lina Tian, Yanfang Zhang, Yanxia Wang, Wenyan Tian. Malignant transformation of ovarian endometrioma and pelvic abscesses: a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 696-702.
[12] Yuan Wu, Biqing Zhu, Dan He, Hairong Wang, Qian Li. Construction of a prognostic nomogram model and risk stratification system for cervical cancer patients with intensity modulated radiation therapy and after-loading therapy[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 734-744.
[13] Xing Wang, Yuan Chen, , Wusman Rezi Wan Guli, Yanying Guo. Co-pathogenic genes and potential common molecular mechanisms of type 2 diabetes mellitus, obesity, nonalcoholic steatohepatitis, and polycystic ovary syndrome[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(05): 481-490.
[14] Fan Hong, Dunjin Chen, Yang Fu, Xinyue Liang, Yi Wu, Xiaoyi Wang. Clinical study of in vitro fertilization-embryo transfer pregnancy complicated with placenta previa[J]. Chinese Journal of Obstetric Emergency(Electronic Edition), 2024, 13(03): 176-182.
[15] Yuhua He, Huanmei Zhong, Wenhui Wang, Yongqi Shen, Yingyun Liu, Guowei Gu, Danna Chen. Analysis of metabolic indexes among patients with different polycystic ovary syndrome (PCOS)phenotypes and diagnostic efficacy of obesity-related indexes in PCOS patients complicated with metabolic syndrome[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2024, 12(04): 212-220.
Viewed
Full text


Abstract