切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (02) : 125 -131. doi: 10.3877/cma.j.issn.1673-5250.2021.02.001

所属专题: 文献

专题论坛

铁调素与早产儿缺铁性贫血的研究现状
阮素凤, 杨凡()   
  • 收稿日期:2020-10-10 修回日期:2021-03-09 出版日期:2021-04-01
  • 通信作者: 杨凡

Hepcidin and premature infants with iron deficiency anemia: a comprehensive review

Sufeng Ruan, Fan Yang()   

  • Received:2020-10-10 Revised:2021-03-09 Published:2021-04-01
  • Corresponding author: Fan Yang
  • Supported by:
    Applied Basic Research Project of Science and Technology Department in Sichuan Province(2018JY0124)
引用本文:

阮素凤, 杨凡. 铁调素与早产儿缺铁性贫血的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2021, 17(02): 125-131.

Sufeng Ruan, Fan Yang. Hepcidin and premature infants with iron deficiency anemia: a comprehensive review[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(02): 125-131.

缺铁性贫血(IDA)是早产儿生后面临的最主要挑战之一。IDA严重影响早产儿的体格生长、免疫功能及神经系统发育。目前,尚无早期诊断早产儿IDA的特异性指标,并且对于早产儿IDA亦缺乏统一诊断和治疗标准。对于铁调素测定,可以早期特异性反映早产儿体内铁状态变化,并且可用于早期诊断早产儿IDA,而且敏感度及特异度均较高,还可为临床制定早产儿IDA更精准诊疗方案提供依据。但是,对于铁调素与早产儿铁代谢的关系及其在早产儿IDA诊疗中的价值,迄今相关研究尚甚少。笔者拟就铁调素的作用机制、孕妇铁代谢对早产儿铁调素的影响、铁调素对早产儿IDA诊治意义及铁调素与铁过载的关系,对铁调素与早产儿IDA的最新研究进展进行阐述。

Iron deficiency anemia (IDA) is one of the most important challenges for premature infants, which seriously affects their physical growth, immune function and nervous system development. There is no unified international standard for diagnosis and treatment of premature infants with IDA, as well as the lack of specific indicators for early diagnosis of IDA in premature infants. At present, results of studies have shown that hepcidin detection can specifically reflect changes of iron status in preterm infants at an early stage, and can be used for early diagnosis of IDA in preterm infants with high sensitivity and specificity. It can also provide reference for clinical development of more accurate diagnosis and treatment programs for preterm infants with IDA. However, there are few relevant studies about relationship between hepcidin and iron metabolism in preterm infants and its value in diagnosis and treatment of IDA in preterm infants. This review intends to elaborate on the latest progresses of relationships between hepcidin and IDA in premature infants from aspects of mechanism of hepcidin, effect of iron metabolism in pregnant women on hepcidin of premature infants, significance of hepcidin in diagnosis and treatment of premature infants with IDA, and relationship between hepcidin and iron overload.

图1 影响铁调素表达的主要因素
[1]
Camaschella C. New insights into iron deficiency and iron deficiency anemia[J]. Blood Rev, 2017, 31(4): 225-233. DOI: 10.1093/hmg/ddv061.
[2]
Muleviciene A, Sestel N, Stankeviciene S, et al. Assessment of risk factors for iron deficiency anemia in infants and young children: a case-control study[J]. Breastfeed Med, 2018, 13(7): 493-499. DOI: 10.1089/bfm.2018.0083.
[3]
Ferri C, Procianoy RS, Silveira RC. Prevalence and risk factors for iron-deficiency anemia in very-low-birth-weight preterm infants at 1 year of corrected age[J]. J Trop Pediatr, 2014, 60(1): 53-60. DOI: 10.1093/tropej/fmt077.
[4]
Akkermans MD, Uijterschout L, Abbink M, et al. Predictive factors of iron depletion in late preterm infants at the postnatal age of 6 weeks[J]. Eur J Clin Nutr, 2016, 70(1): 941-946. DOI: 10.1038/ejcn.2016.34.
[5]
Suwannakeeree P, Jangmeonwai P. The prevalence and risk factors of iron deficiency anemia in Thai infants by complete blood count at 9-month-old[J]. J Med Assoc Thai, 2020, 10(9): 891-896. DOI: 10.35755/jmedassocthai.2020.09.10904.
[6]
Fernandez MJ, Ochoa JJ, Dada GOL, et al. Iron deficiency and iron homeostasis in low birth weight preterm infants: a systematic review[J]. Nutrients, 2019, 11(5): 1090-2010. DOI: 10.3390/nu11051090.
[7]
Georgieff MK. Iron assessment to protect the developing brain[J]. Am J Clin Nutr, 2017, 106(6): 1593-1588. DOI: 10.3945/ajcn.117.155846.
[8]
Algarin C, Karunakaran KD, Reyes S, et al. Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy[J]. Front Aging Neurosci, 2017, 9: 54. DOI: 10.3389/fnagi.2017.00054.
[9]
Pagani A, Nai A, Silvestri L, et al. Hepcidin and anemia: a tight relationship[J]. Front Physiol, 2019, 10: 1294. DOI: 10.3389/fphys.2019.01294.
[10]
Berglund SK, Chmielewska AM, Domellf M, et al. Hepcidin is a relevant iron status indicator in infancy: results from a randomized trial of early vs. delayed cord clamping[J]. Pediatr Res, 2020, 59: 101318. DOI: 10.1038/s41390-020-1045-9.
[11]
Korlesky C, Kling PJ, Pham DQP, et al. Cord blood erythropoietin and hepcidin reflect lower newborn iron stores due to maternal obesity during pregnancy[J]. Am J Perinatol, 2018, 36(5): 511-516. DOI: 10.1055/s-0038-1669444.
[12]
Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica, 2020,105(2): 260-272. DOI: 10.3324/haematol.2019.232124.
[13]
Chappell M, Rivella S. New potential players in hepcidin regulation[J]. Haematologica, 2019, 104(9): 1691-1693. DOI: 10.3324/haematol.2019.224311.
[14]
Lesbordes-Brion JC, Viatte L, Bennoun M, et al. Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis[J]. Blood, 2006, 108(4): 1402-1405. DOI: 10.1182/blood-2006-02-003376.
[15]
Roy CN, Mak HH, Akpan I, et al. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation[J]. Blood, 2007, 109(9): 4038-4044. DOI: 10.1182/blood-2006-10-051755.
[16]
Roth MP, Meynard D, Coppin H. Regulators of hepcidin expression[J]. Vitam Horm, 2019, 110: 101-129. DOI: 10.1016/bs.vh.2019.01.005.
[17]
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin[J]. Adv Nutr, 2017, 8(1): 126-136. DOI: 10.3945/an.116.013961.
[18]
Arezes J, Foy N, Mchugh K, et al. Erythroferrone inhibits the induction of hepcidin by BMP6[J]. Blood, 2018, 132(14): 1473-1477. DOI: 10.1182/blood-2018-06-857995.
[19]
Rishi G, Wallace DF, Subramaniam VN. Hepcidin: regulation of the master iron regulator[J]. Biosci Rep, 2015, 35(3): e00192. DOI: 10.1042/BSR20150014.
[20]
Ganz T. Erythropoietic regulators of iron metabolism[J]. Free Radic Biol Med, 2019, 133: 69-74. DOI: 10.1016/j.freeradbiomed.2018.07.003.
[21]
Harigae H. Iron metabolism and the related diseases[J]. Int J Hematol, 2018, 107(1): 5-6. DOI: 10.1007/s12185-017-2384-0.
[22]
Ru Y, Pressman EK, Guillet R, et al. Umbilical cord hepcidin concentrations are positively associated with the variance in iron status among multiple birth neonates[J]. J Nutr, 2018, 148(2): 1716-1722. DOI: 10.1093/jn/nxy151.
[23]
Bencaiova GA, Vogt DR, Hoesli I. Serum hepcidin and iron status parameters in pregnant women and the association with adverse maternal and fetal outcomes: a study protocol for a prospective cohort study[J]. BMJ Open, 69(11): e032280. DOI: 10.1136/bmjopen-2019-032280.
[24]
Basu S, Kumar N, Srivastava R, et al. Maternal and cord blood hepcidin concentrations in severe iron deficiency anemia[J]. Pediatr Neonatol, 2016, 57(5): 413-419. DOI: 10.1016/j.pedneo.2015.09.012.
[25]
Kim HA, Park SH, Lee EJ. Iron status in small for gestational age and appropriate for gestational age infants at birth[J]. Korean J Pediatr, 2018, 62(3): 102-107. DOI: 10.3345/kjp.2018.06653.
[26]
Rehu M, Punnonen K, Ostland V, et al. Maternal serum hepcidin is low at term and independent of cord blood iron status[J]. Eur J Haematol, 2010, 85(4): 345-352. DOI: 10.1111/j.1600-0609.2010.01479.x.
[27]
Cross JH, Prentice AM, Carla C. Hepcidin, serum iron and transferrin saturation in full term and premature infants during the first month of life: a state-of-the-art review of existing evidence in humans[J]. Curr Dev Nutr, 2020, 4(8): nzaa104. DOI: 10.1093/cdn/nzaa104.
[28]
Ichinomiya K, Maruyama K, Inoue T, et al. Perinatal factors affecting serum hepcidin levels in low-birth-weight infants[J]. Neonatology, 2017, 112(2): 110-116. DOI: 10.1159/000473871.
[29]
Stinson LF, Payne MS. Infection-mediated preterm birth: bacterial origins and avenues for intervention[J]. Aust N Z J Obstet Gynaecol, 2019, 59(6): 781-790. DOI: 10.1111/ajo.13078.
[30]
Armitage AE, Agbla SC, Betts M, et al. Rapid growth is a dominant predictor of hepcidin suppression and declining ferritin in Gambian infants[J]. Haematologica, 2019, 104(8): 1542-1553. DOI: 10.3324/haematol.2018.210146.
[31]
Pasricha SR, Atkinson SH, Armitage AE, et al. Expression of the iron hormone hepcidin distinguishes different types of anemia in African children[J]. Sci Transl Med, 2014, 6(235): 235re3. DOI: 10.1126/scitranslmed.3008249.
[32]
Albaroudi IN, Khodder M, Al Saadi T, et al. Prevalence, diagnosis, and management of iron deficiency and iron deficiency anemia among Syrian children in a major outpatient center in Damascus, Syria[J]. Avicenna J Med, 2018, 8(3): 92-103. DOI: 10.4103/ajm.AJM_169_17.
[33]
Babaei M, Shafiei S, Bijani A, et al. Ability of serum ferritin to diagnose iron deficiency anemia in an elderly cohort[J]. Rev Bras Hematol Hemoter, 2017, 39(3): 223-228. DOI: 10.1016/j.bjhh.2017.02.002.
[34]
Uijterschout L, Domellof M, Berglund S, et al. Serum hepcidin in infants born after 32 to 37 wk of gestational age[J]. Pediatr Res, 2016, 79(4): 608-613. DOI: 10.1038/pr.2015.258.
[35]
Müller KF, Lorenz L, Poets CF, et al. Hepcidin concentrations in serum and urine correlate with iron homeostasis in preterm infants[J]. J Pediatr, 2012, 160(6): 949-953. DOI: 10.1016/j.jpeds.2011.12.030.
[36]
Dewan P, Dixit A, Gomber S, et al. Serum and urinary hepcidin for diagnosing iron-deficiency anemia in under-5 children[J]. J Pediatr Hematol Oncol, 2018, 41(4): 216-220. DOI: 10.1097/MPH.0000000000001320.
[37]
Berglund S, Lonnerdal B, Westrup B, et al. Effects of iron supplementation on serum hepcidin and serum erythropoietin in low-birth-weight infants[J]. Am J Clin Nutr, 2011, 94(6): 1553-1561. DOI: 10.3945/ajcn.111.013938.
[38]
Bregman DB, Morris D, Koch TA, et al. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia[J]. Am J Hematol, 2013, 88(2): 97-101. DOI: 10.1182/blood.V120.21.484.484.
[39]
Brannon PM, Taylor CL. Iron supplementation during pregnancy and infancy: uncertainties and implications for research and policy[J]. Nutrients, 2017, 9(12): 1327. DOI: 10.3390/nu9121327.
[40]
Najeeb T, Anjum N. Association of cord hepcidin and iron parameters with maternal hepcidin, iron status markers and neonatal morphometrics[J]. Pak J Physiol, 2018, 14(2): 7-10.
[41]
Frazer DM, Wilkins SJ, Darshan D, et al. Ferroportin is essential for iron absorption during suckling, but is hyporesponsive to the regulatory hormone hepcidin[J]. Cell Mol Gastroenterol Hepatol, 2016, 3(3): 410-421. DOI: 10.1016/j.jcmgh.2016.12.002.
[42]
Raffaeli G, Manzoni F, Cortesi V, et al. Iron homeostasis disruption and oxidative stress in preterm newborns[J]. Nutrients, 2020, 12(6): 1554. DOI: 10.3390/nu12061554.
[43]
Treviño-Báez JD, Briones-Lara E, Alamillo-Velázquez J, et al. Multiple red blood cell transfusions and iron overload in very low birthweight infants[J]. Vox Sanguinis, 2017, 112(5): 453-458. DOI: 10.1111/vox.12528.
[44]
Lönnerdal B. Excess iron intake as a factor in growth, infections, and development of infants and young children[J]. Am J Clin Nutr, 2017, 106(6): 1681-1687. DOI: 10.3945/ajcn.117.156042.
[45]
Hare DJ, Cardoso BR, Raven EP, et al. Excessive early-life dietary exposure: a potential source of elevated brain iron and a risk factor for Parkinson′s disease[J]. NPJ Parkinsons Dis, 2017, 3(1): 1-5. DOI: 10.1038/s41531-016-0004-y.
[46]
Wessling-Resnick M. Excess iron: considerations related to development and early growth[J]. Am J Clin Nutr, 2017, 106(6): 1600-1605. DOI: 10.3945/ajcn.117.155879.
[47]
Szudzik M, Starzyński RR, Jończy A, et al. Iron supplementation in suckling piglets: an ostensibly easy therapy of neonatal iron deficiency anemia[J]. Pharmaceuticals, 2018, 11(4): 128. DOI: 10.3390/ph11040128.
[48]
《中华儿科杂志》编辑委员会. 儿童缺铁和缺铁性贫血防治建议[J]. 中国儿童保健杂志,2010, 46(8): 502-504. DOI: 10.3321/j.issn:0578-1310.2008.07.006.
[1] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[2] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[3] 谢江燕, 王亚菲, 贺芳. 妊娠合并血栓性血小板减少性紫癜2例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 556-563.
[4] 韩肖燕, 杨桦. 中孕期孕妇血清胎盘生长因子水平低与胎儿不良预后的关系[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 398-402.
[5] 徐婷婷, 詹泳池, 王晓东, 刘兴会. 电子胎心监测结果出现正弦波形的胎母输血综合征围生期结局分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 382-389.
[6] 梅娟, 陶旭炜. 弥散性血管内凝血为首发表现先天性肝内门体静脉分流新生儿2例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 322-330.
[7] 张禾璇, 杨雪, 王侣金, 李林洁, 刘兴宇. 新生儿葡萄糖-6-磷酸脱氢酶缺乏症筛查及基因突变特征分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 200-208.
[8] 郑伟军, 郑超, 方一凡, 吴典明, 王翔, 陈飞, 刘明坤. 新生儿急性阑尾炎17例诊治分析并文献回顾[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 291-293.
[9] 张龙, 孙善柯, 徐伟, 李文柱, 李俊达, 池涌泉, 何广胜, 成峰, 王学浩, 饶建华. 腹腔镜脾切除治疗血液系统疾病的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 870-875.
[10] 雷永琪, 刘新阳, 杨黎渝, 铁学宏, 俞星新, 耿志达, 刘雨, 陈政良, 惠鹏, 梁英健. 肝脏血管周上皮样细胞肿瘤合并贫血一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 710-718.
[11] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[12] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[13] 粟睿, 周璇, 杨殊琳, 方晨韵, 陈素华, 邓东锐, 曾万江, 刘海意, 龚洵, 吴媛媛, 刘燕燕, 肖娟, 余俊, 何梦舟, 李淑芳, 王子琢, 林星光, 乌剑利, 王少帅, 岳静, 靳镭, 冯玲, 丁文成. 经辅助生殖技术妊娠患者早产的影响因素分析[J/OL]. 中华产科急救电子杂志, 2024, 13(03): 168-175.
[14] 秦一之, 张杨杨, 刘定华. 一例β型地中海贫血病例报道[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(03): 187-191.
[15] 刘昌恩, 李岩, 张其德. 基于内镜筛查发现的自身免疫性胃炎的临床特征分析[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(04): 233-237.
阅读次数
全文


摘要