1 |
Lu-Emerson C, Khot S. Neurological sequelae of hypoxic-ischemic brain injury[J]. NeuroRehabilitation, 2010, 26(1):35-45.
|
2 |
Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy[J]. Early Hum Dev, 2010, 86(6):329-338.
|
3 |
Lubics A, Reglodi D, Tamas A, et al. Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury[J]. Behav Brain Res, 2005, 57(1):157-165.
|
4 |
Fan LW, Lin S, Pang Y, et al. Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat[J]. Behav Brain Res, 2005, 165(1):80-90.
|
5 |
Felt BT, Schallert T, Shao J, et al. Early appearance of functional deficits after neonatal excitotoxic and hypoxic-ischemic injury: fragile recovery after development and role of the NMDA receptor[J]. Dev Neurosci, 2002, 24(5):418-425.
|
6 |
Huang Z, Liu J, Cheung PY, et al. Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury[J]. Brain Res, 2009, 1301:100-109.
|
7 |
Tai WC, Burke KA, Dominguez JF, et al. Growth deficits in a postnatal day 3 rat model of hypoxic-ischemic brain injury[J]. Behav Brain Res, 2009, 202(1):40-49.
|
8 |
Pang Y, Fan LW, Zheng B, et al. Dexamethasone and betamethasone protect against lipopolysaccharide-induced brain damage in neonatal rats[J]. Pediatr Res, 2012, 1(5):552-558.
|
9 |
McAuliffe JJ, Joseph B, Hughes E, et al. Metallothionein Ⅰ, Ⅱ deficient mice do not exhibit significantly worse long-term behavioral outcomes following neonatal hypoxia-ischemia: MT-Ⅰ, Ⅱ deficient mice have inherent behavioral impairments[J]. Brain Res, 2008, 1190:175-185.
|
10 |
McAuliffe JJ, Miles L, Vorhees CV. Adult neurological function following neonatal hypoxia-ischemia in a mouse model of the term neonate: water maze performance is dependent on separable cognitive and motor components[J]. Brain Res, 2006, 1118(1):208-221.
|
11 |
Pazaiti A, Soubasi V, Spandou E, et al. Evaluation of long-lasting sensorimotor consequences following neonatal hypoxic-ischemic brain injury in rats: the neuroprotective role of MgSO4[J]. Neonatology, 2009, 95(1):33-40.
|
12 |
Yasuhara T, Hara K, Maki M, et al. Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts[J]. J Cell Mol Med, 2010, 14(4):914-921.
|
13 |
Rha DW, Kang SW, Park YG, et al. Effects of constraint-induced movement therapy on neurogenesis and functional recovery after early hypoxic-ischemic injury in mice[J]. Dev Med Child Neurol, 2011, 53(4):327-333.
|
14 |
Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on[J]. Neurosci Biobehav Rev, 2005, 29(8):1193-1205.
|
15 |
Zhu W, Ma X, Li F, et al. The effect of recombinant stromal cell-derived factor-1 treatment on hypoxic-ischemic brain injury in neonatal mice[J]. Neuropediatrics, 2012, 43(6):320-331.
|
16 |
Ming-Yan H, Luo YL, Zhang XC, et al. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra[J]. Braz J Med Biol Res, 2012, 45(1):13-19.
|
17 |
Sanches EF, Arteni NS, Nicola F, et al. Early hypoxia-ischemia causes hemisphere and sex-dependent cognitive impairment and histological damage[J]. Neuroscience, 2013, 237:208-215.
|
18 |
Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy[J]. J Biomed Biotechnol, 2011: 609813.
|
19 |
Noor JI, Ikeda T, Mishima K, et al. Short-term administration of a new free radical scavenger, edaravone, is more effective than its long-term administration for the treatment of neonatal hypoxic-ischemic encephalopathy[J]. Stroke, 2005, 36(11):2468-2474.
|
20 |
Carloni S, Perrone S, Buonocore G, et al. Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats[J]. J Pineal Res, 2008, 44(2):157-164.
|
21 |
Jones NM, Kardashyan L, Callaway JK, et al. Long-term functional and protective actions of preconditioning with hypoxia, cobalt chloride, and desferrioxamine against hypoxic-ischemic injury in neonatal rats[J]. Pediatr Res, 2008, 63(6):620-624.
|
22 |
McAuliffe JJ, Joseph B, Vorhees CV. Isoflurane-delayed preconditioning reduces immediate mortality and improves striatal function in adult mice after neonatal hypoxia-ischemia[J]. Anesth Analg, 2007, 104(5):1066-1077.
|
23 |
Pereira LO, Strapasson AC, Nabinger PM, et al. Early enriched housing results in partial recovery of memory deficits in female, but not in male, rats after neonatal hypoxia-ischemia[J]. Brain Res, 2008, 1218:257-266.
|
24 |
Pereira LO, Arteni NS, Petersen RC, et al. Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat[J]. Neurobiol Learn Mem, 2007, 87(1):101-108.
|
25 |
Vivinetto AL, Suarez MM, Rivarola MA. Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment[J]. Behav Brain Res, 2013, 240:110-118.
|
26 |
Leggio MG, Mandolesi L, Federico F, et al. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat[J]. Behav Brain Res, 2005, 163(1):78-90.
|