切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2014, Vol. 10 ›› Issue (03) : 383 -386. doi: 10.3877/cma.j.issn.1673-5250.2014.03.028

所属专题: 文献

综述

围生期缺氧缺血性脑损伤动物行为学变化特征及其干预措施的研究进展
丁建伟1, 邰先桃1,*,*(), 熊磊1, 贾杰2   
  1. 1. 650200 昆明,云南中医学院针灸推拿康复学院
    2. 复旦大学附属华山医院康复科
  • 收稿日期:2013-12-14 修回日期:2014-04-16 出版日期:2014-06-01
  • 通信作者: 邰先桃

Research Progress of Characteristics of Behavioral Manifestations and Interventions of Perinatal Hypoxic-Ischemic Brain Damage Animals

Jianwei Ding1, Xiantao Tai1(), Lei Xiong1, Jie Jia2   

  1. 1. School of Acupuncture, Massage and Rehabilitation, Yunnan College of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
  • Received:2013-12-14 Revised:2014-04-16 Published:2014-06-01
  • Corresponding author: Xiantao Tai
  • About author:
    (Corresponding author: Tai Xiantao, Email: )
引用本文:

丁建伟, 邰先桃, 熊磊, 贾杰. 围生期缺氧缺血性脑损伤动物行为学变化特征及其干预措施的研究进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2014, 10(03): 383-386.

Jianwei Ding, Xiantao Tai, Lei Xiong, Jie Jia. Research Progress of Characteristics of Behavioral Manifestations and Interventions of Perinatal Hypoxic-Ischemic Brain Damage Animals[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2014, 10(03): 383-386.

新生儿缺氧缺血性脑病(HIE)可引起新生儿感觉运动障碍和认知缺陷,围生期窒息是导致新生儿HIE的重要病因。围生期缺氧缺血性脑损伤(HIBD)动物可表现为早期或远期行为异常,如感觉运动、认知、情感行为能力等方面。笔者拟从早期神经行为缺陷、运动功能异常、情感行为能力异常改变、认知缺陷等方面阐述围生期HIBD动物行为学的变化特征;同时对药物干预、缺氧预处理和丰富环境刺激(EE)等对HIBD动物的行为学干预效果的研究进展,进行综述如下。

Hypoxic-ischemic encephalopathy (HIE) could induce sensorimotor dysfunction and cognitive deficits, and perinatal asphyxia is the major cause of neonatal HIE. The manifestations of hypoxic-ischemic animal during perinatal period include neurobehavioral deficits and motor function abnormal, especially in the perspective of sensorimotor, cognitive and emotional behavior abilities. This article elaborated the behavioral changes of perinatal hypoxic-ischemic brain damage (HIBD) animals from the perspectives of early neurobehavioral defects, abnormal motor function, abnormal changes in emotional capacity and cognitive defects. Moreover, this paper also summarized effects of drug intervention, pretreatment and environmental enrichment (EE) on the behavioral changes of perinatal HIBD animal.

1
Lu-Emerson C, Khot S. Neurological sequelae of hypoxic-ischemic brain injury[J]. NeuroRehabilitation, 2010, 26(1):35-45.
2
Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy[J]. Early Hum Dev, 2010, 86(6):329-338.
3
Lubics A, Reglodi D, Tamas A, et al. Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury[J]. Behav Brain Res, 2005, 57(1):157-165.
4
Fan LW, Lin S, Pang Y, et al. Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat[J]. Behav Brain Res, 2005, 165(1):80-90.
5
Felt BT, Schallert T, Shao J, et al. Early appearance of functional deficits after neonatal excitotoxic and hypoxic-ischemic injury: fragile recovery after development and role of the NMDA receptor[J]. Dev Neurosci, 2002, 24(5):418-425.
6
Huang Z, Liu J, Cheung PY, et al. Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury[J]. Brain Res, 2009, 1301:100-109.
7
Tai WC, Burke KA, Dominguez JF, et al. Growth deficits in a postnatal day 3 rat model of hypoxic-ischemic brain injury[J]. Behav Brain Res, 2009, 202(1):40-49.
8
Pang Y, Fan LW, Zheng B, et al. Dexamethasone and betamethasone protect against lipopolysaccharide-induced brain damage in neonatal rats[J]. Pediatr Res, 2012, 1(5):552-558.
9
McAuliffe JJ, Joseph B, Hughes E, et al. Metallothionein Ⅰ, Ⅱ deficient mice do not exhibit significantly worse long-term behavioral outcomes following neonatal hypoxia-ischemia: MT-Ⅰ, Ⅱ deficient mice have inherent behavioral impairments[J]. Brain Res, 2008, 1190:175-185.
10
McAuliffe JJ, Miles L, Vorhees CV. Adult neurological function following neonatal hypoxia-ischemia in a mouse model of the term neonate: water maze performance is dependent on separable cognitive and motor components[J]. Brain Res, 2006, 1118(1):208-221.
11
Pazaiti A, Soubasi V, Spandou E, et al. Evaluation of long-lasting sensorimotor consequences following neonatal hypoxic-ischemic brain injury in rats: the neuroprotective role of MgSO4[J]. Neonatology, 2009, 95(1):33-40.
12
Yasuhara T, Hara K, Maki M, et al. Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts[J]. J Cell Mol Med, 2010, 14(4):914-921.
13
Rha DW, Kang SW, Park YG, et al. Effects of constraint-induced movement therapy on neurogenesis and functional recovery after early hypoxic-ischemic injury in mice[J]. Dev Med Child Neurol, 2011, 53(4):327-333.
14
Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on[J]. Neurosci Biobehav Rev, 2005, 29(8):1193-1205.
15
Zhu W, Ma X, Li F, et al. The effect of recombinant stromal cell-derived factor-1 treatment on hypoxic-ischemic brain injury in neonatal mice[J]. Neuropediatrics, 2012, 43(6):320-331.
16
Ming-Yan H, Luo YL, Zhang XC, et al. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra[J]. Braz J Med Biol Res, 2012, 45(1):13-19.
17
Sanches EF, Arteni NS, Nicola F, et al. Early hypoxia-ischemia causes hemisphere and sex-dependent cognitive impairment and histological damage[J]. Neuroscience, 2013, 237:208-215.
18
Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy[J]. J Biomed Biotechnol, 2011: 609813.
19
Noor JI, Ikeda T, Mishima K, et al. Short-term administration of a new free radical scavenger, edaravone, is more effective than its long-term administration for the treatment of neonatal hypoxic-ischemic encephalopathy[J]. Stroke, 2005, 36(11):2468-2474.
20
Carloni S, Perrone S, Buonocore G, et al. Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats[J]. J Pineal Res, 2008, 44(2):157-164.
21
Jones NM, Kardashyan L, Callaway JK, et al. Long-term functional and protective actions of preconditioning with hypoxia, cobalt chloride, and desferrioxamine against hypoxic-ischemic injury in neonatal rats[J]. Pediatr Res, 2008, 63(6):620-624.
22
McAuliffe JJ, Joseph B, Vorhees CV. Isoflurane-delayed preconditioning reduces immediate mortality and improves striatal function in adult mice after neonatal hypoxia-ischemia[J]. Anesth Analg, 2007, 104(5):1066-1077.
23
Pereira LO, Strapasson AC, Nabinger PM, et al. Early enriched housing results in partial recovery of memory deficits in female, but not in male, rats after neonatal hypoxia-ischemia[J]. Brain Res, 2008, 1218:257-266.
24
Pereira LO, Arteni NS, Petersen RC, et al. Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat[J]. Neurobiol Learn Mem, 2007, 87(1):101-108.
25
Vivinetto AL, Suarez MM, Rivarola MA. Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment[J]. Behav Brain Res, 2013, 240:110-118.
26
Leggio MG, Mandolesi L, Federico F, et al. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat[J]. Behav Brain Res, 2005, 163(1):78-90.
[1] 徐婷婷, 詹泳池, 王晓东, 刘兴会. 电子胎心监测结果出现正弦波形的胎母输血综合征围生期结局分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 382-389.
[2] 张璐, 杨惠娟, 刘凯波. 影响双胎消失综合征存活儿围生期结局危险因素研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(04): 400-409.
[3] 刘仕茜, 屈艺, 应俊杰, 母得志. 液体活检在新生儿脑损伤诊断及预后判断中的应用和展望[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 125-131.
[4] 王璟, 曾慧慧, 李东阳, 何辉, 张丽晋, 尚晓瑞, 李一辰. 2014—2019年北京市早产儿出生状况及围生结局分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(06): 647-655.
[5] 杨璇, 唐军. 双胎输血综合征的诊治及其对新生儿预后影响的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(05): 510-518.
[6] 袁静, 杨超, 陈娟. 间充质干细胞对新生儿缺氧缺血性脑损伤的神经保护作用[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 386-391.
[7] 杨晓燕, 石晶, 母得志. 严重急性呼吸综合征冠状病毒2感染的母婴围生期管理[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(02): 125-130.
[8] 马慧顺, 陈洪菊, 唐军. Sestrin2参与调控新生鼠缺氧缺血性脑损伤后细胞自噬机制[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(01): 32-41.
[9] 王丽敏, 顾珺, 沈朝斌. 微小RNA在新生儿缺血缺氧性脑病中的表达[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(05): 497-503.
[10] 何萌, 陈娟, 伍金林. 间充质干细胞通过调控巨噬细胞极化实现免疫应答的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(05): 492-496.
[11] 李红雨, 常青, 郑春明, 王丹. 新产程标准实施对低危产妇妊娠结局的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(02): 180-185.
[12] 蒋新液, 郭冰冰, 裴晶晶, 许吟, 王丽珍, 朱云龙. 妊娠期糖尿病孕妇的早期规范化管理对分娩新生儿及其随访的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2018, 14(06): 711-717.
[13] 黄海燕, 陆岸锋, 黄国盛, 闭雪兰. 新型随访模式下早干预对早产儿神经发育的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2018, 14(03): 331-336.
[14] 蔡丽梅, 何洋, 王华, 母得志. 晚期早产儿高胆红素血症的分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2018, 14(02): 151-157.
[15] 刘笑笑, 张小杉, 刘群, 马岚, 赵海玥, 王雅晳. 超声心动图在围生期心肌病中的应用价值研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(11): 1196-1201.
阅读次数
全文


摘要