切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2019, Vol. 15 ›› Issue (05) : 497 -503. doi: 10.3877/cma.j.issn.1673-5250.2019.05.004

所属专题: 文献

专题论坛

微小RNA在新生儿缺血缺氧性脑病中的表达
王丽敏1, 顾珺2, 沈朝斌3,()   
  1. 1. 蚌埠医学院研究生院,安徽 233000
    2. 上海交通大学附属第一人民医院儿科 200080
    3. 上海市中西医结合医院儿科 200082
  • 收稿日期:2019-04-22 修回日期:2019-09-09 出版日期:2019-10-01
  • 通信作者: 沈朝斌

MicroRNA expression of hypoxic-ischemic encephalopahty in newborn

Limin Wang1, Jun Gu2, Chaobin Shen3,()   

  1. 1. Graduate School, Bengbu Medical College, Bengbu 233000, Anhui Province, China
    2. Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao-Tong University, Shanghai 200080, China
    3. Department of Pediatrics, Shanghai TCM-Integrated Hospital, Shanghai 200082, China
  • Received:2019-04-22 Revised:2019-09-09 Published:2019-10-01
  • Corresponding author: Chaobin Shen
  • About author:
    Corresponding author: Shen Chaobin, Email:
  • Supported by:
    Shanghai Key Project of Specific Disease Field in Integration of Traditional and Western Medicine by Shanghai Government Management Office of TCM(ZXBZ2013-003)
引用本文:

王丽敏, 顾珺, 沈朝斌. 微小RNA在新生儿缺血缺氧性脑病中的表达[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(05): 497-503.

Limin Wang, Jun Gu, Chaobin Shen. MicroRNA expression of hypoxic-ischemic encephalopahty in newborn[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2019, 15(05): 497-503.

微小RNA(miRNA)是一类高度保守的内源性小分子RNA。miRNA主要通过选择性结合mRNA调控基因表达。目前研究结果表明,中枢神经系统存在大量miRNA,并参与神经细胞的正常生长、发育,以及组织损伤修复、肿瘤发生、神经退行性变等多种病理、生理过程。笔者拟就新生儿缺血缺氧性脑病(HIE) miRNA谱系的最新研究进展进行阐述,探讨其miRNA特异性表达,对新生儿HIE诊断和预后判断的意义,旨在为该病的相关诊治研究提供参考。

MicroRNA (miRNA) is a kind of highly conserved endogenous single stranded small molecule RNA. miRNA regulate gene expression by selective binding mRNA. Recent research shows that central nervous system includes a number of miRNA, and miRNA participates in many pathophysiological processes, such as the growth and development of nerve cells, repair of tissue damage, tumorigenesis, neurodegeneration and so on. This article attempts to expound miRNA profile of neonatal hypoxic-ischemia encephalopathy (HIE), and to explore the significance of miRNA-specific expression in the diagnosis and prognosis of neonatal HIE, in order to put forward new research ideas and methods for diagnosis and treatment of neonatal HIE.

[1]
Miska EA, Ferguson-Smith AC. Transgenerational inheritance: models and mechanisms of non-DNA sequence-based inheritance[J]. Science, 2016, 354(6308): 59-63.
[2]
Wang Y, Liu H, Sun Z. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans[J]. Biol Rev Camb Philos Soc, 2017, 92(4): 2084-2111.
[3]
Lauressergues D, Couzigou JM, Clemente HS, et al. Primary transcripts of microRNAs encode regulatory peptides[J]. Nature, 2015, 520(7545): 90-93.
[4]
Li XQ, Zhang W, Xiao M, et al. MicroRNA-146b-5p protects oligodendrocyte precursor cells from oxygen/glucose deprivation-induced injury through regulating Keap1/Nrf2 signaling via targeting bromodomain-containing protein 4[J]. Biochem Biophys Res Commun, 2019, 513(4): 875-882.
[5]
Guo D, Barry L, Lin SS, et al. RNAa in action: from the exception to the norm[J]. RNA Biol, 2014, 11(10): 1221-1225.
[6]
Prata J, Santos SG, Almeida MI, et al. Bridging autism spectrum disorders and schizophrenia through inflammation and biomarkers-pre-clinical and clinical investigations[J]. J Neuroinflammation, 2017, 14(1): 179.
[7]
Mohr AM, Mott JL. Overview of microRNA biology[J]. Semin Liver Dis, 2015, 35(1): 3-11.
[8]
Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy[J]. Neuropharmacology, 2019, 149(1): 55-65.
[9]
Looney AM, Walsh BH, Moloney G, et al. Down-regulation of umbilical cord blood levels of miR-374a in neonatal hypoxic ischemic encephalopathy[J]. J Pediatr, 2015, 167(2): 269-273. e2.
[10]
Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals[J]. Lancet, 2016, 388(10063): 3027-3035.
[11]
Rahaman P, Del Bigio MR. Histology of brain trauma and hypoxia-ischemia[J]. Acad Forensic Pathol, 2018, 8(3): 539-554.
[12]
Qiao A, Khechaduri A, Kannan Mutharasan R, et al. MicroRNA-210 decreases heme levels by targeting ferrochelatase in cardiomyocytes[J]. J Am Heart Assoc, 2013, 2(2): e000121.
[13]
Ma Q, Dasgupta C, Li Y, et al. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats[J]. Neurobiol Dis, 2016, 89: 202-212.
[14]
Qiu J, Zhou XY, Zhou XG, et al. MicroRNA-210 knockdown contributes to apoptosis caused by oxygen glucose deprivation in PC12 cells[J]. Mol Med Rep, 2015, 11(1): 719-723.
[15]
Radom-Aizik S, Zaldivar FP, Nance DM, et al. Growth inhibition and compensation in response to neonatal hypoxia in rats[J]. Pediatr Res, 2013, 74(2): 111-120.
[16]
Cicchillitti L, Di Stefano V, Isaia E, et al. Hypoxia-inducible factor 1-α induces miR-210 in normoxic differentiating myoblasts[J]. J Biol Chem, 2012, 287(53): 44761-44771.
[17]
Wang L, Ke J, Li Y, et al. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats[J]. Int J Biol Sci, 2017, 13(1): 76-84.
[18]
Pan Q, Zheng J, Du D, et al. MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage[J]. Stem Cells Int, 2018, 2018: 2912347.
[19]
van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis[J]. J Cell Mol Med, 2009, 13(8A): 1577-1585.
[20]
Xi T, Jin F, Zhu Y, et al. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt[J]. Biochem Biophys Res Commun, 2017, 494(1-2): 144-151.
[21]
彭彬,吴大玉,孙家兰,等. 急性脑梗死早期血中miRNAs水平与脑侧支循环建立的关系[J]. 中风与神经疾病杂志,2016, 33(2): 100-103.
[22]
Li WA, Efendizade A, Ding Y. The role of microRNA in neuronal inflammation and survival in the post ischemic brain: a review[J]. Neurol Res, 2017: 1-9. .
[23]
刘津溪,靳兰洁,周爽. 微小RNA-126与心脑血管疾病的研究进展[J]. 中华老年心脑血管病杂志,2017, 19(11): 1210-1212 .
[24]
Leung LY, Chan CP, Leung YK, et al. Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke[J]. Clin Chim Acta, 2014, 433: 139-144.
[25]
Sun Y, Luo ZM, Guo XM, et al. An updated role of microRNA-124 in central nervous system disorders: a review[J]. Front Cell Neurosci, 2015, 9: 193.
[26]
Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3): 959-966.
[27]
Doeppner TR, Kaltwasser B, Sanchez-Mendoza EH, et al. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways[J]. J Cereb Blood Flow Metab, 2017, 37(3): 914-926.
[28]
Frederikse P, Nandanoor A, Kasinathan C. PTBP-dependent PSD-95 and CamKⅡα alternative splicing in the lens[J]. Mol Vis, 2014, 20: 1660-1667.
[29]
Pandey A, Singh P, Jauhari A, et al. Critical role of the miR-200 family in regulating differentiation and proliferation of neurons[J]. J Neurochem, 2015, 133(5): 640-652.
[30]
骆健明,欧楚耿,庄泽锐,等. miRNA-200a调控缺血缺氧后新生大鼠海马神经干细胞的增殖[J]. 泰山医学院学报,2015, 36(12): 1324-1326.
[31]
叶卉初,杨楠,杨丽君,等. miRNA-200b与髓鞘碱性蛋白在新生未成熟大鼠缺氧缺血性脑损伤过程中的相互关系[J]. 临床和实验医学杂志,2015, 14(7): 521-524.
[32]
Graham EM, Burd I, Everett AD, et al. Blood biomarkers for evaluation of perinatal encephalopathy[J]. Front Pharmacol, 2016, 7: 196.
[33]
Liu W, Chen X, Zhang Y. Effects of microRNA-21 and microRNA-24 inhibitors on neuronal apoptosis in ischemic stroke[J]. Am J Transl Res, 2016, 8(7): 3179-3187.
[34]
Aldaz B, Sagardoy A, Nogueira L, et al. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells[J]. PLoS One, 2013, 8(10): e77098.
[35]
Quintavalle C, Donnarumma E, Iaboni M, et al. Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells[J]. Oncogene, 2013, 32(34): 4001-4008.
[36]
Liu Y, Nie H, Zhang K, et al. A feedback regulatory loop between HIF-1α and miR-21 in response to hypoxia in cardiomyocytes[J]. Febs Lett, 2014, 588(17): 3137-3146.
[37]
Li B, Concepcion K, Meng X, et al. Brain-immune interactions in perinatal hypoxic-ischemic brain injury[J]. Prog Neurobiol, 2017, 159: 50-68.
[38]
Galicia JC, Naqvi AR, Ko CC, et al. MiRNA-181a regulates Toll-like receptor agonist-induced inflammatory response in human fibroblasts[J]. Genes Immun, 2014, 15(5): 333-337.
[39]
Hutchison ER, Kawamoto EM, Taub DD, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes[J]. Glia, 2013, 61(7): 1018-1028.
[40]
Zhang L, Li YJ, Wu XY, et al. MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4[J]. J Neurochem, 2015, 132(6): 713-723.
[41]
Ye Y, He X, Lu F, et al. A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP- induced neuroinflammation[J]. Cell Death Dis, 2018, 9(8): 803.
[42]
Gilles ME, Slack FJ. Let-7 microRNA as a potential therapeutic target with implications for immunotherapy[J]. Expert Opin Ther Targets, 2018, 22(11): 929-939.
[43]
Shinohara Y, Yahagi K, Kawano M, et al. MiRNA profiling of bilateral rat hippocampal CA3 by deep sequencing[J]. Biochem Biophys Res Commun, 2011, 409(2): 293-298.
[44]
张旭,朱雯,何梦藻,等. miRNA表达谱在缺氧缺血性脑病新生儿脐带血中的变化及意义[J]. 浙江医学,2017, 39(16): 1333-1336, 1344.
[45]
Ponnusamy V, Kapellou O, Yip E, et al. A study of microRNAs from dried blood spots in newborns after perinatal asphyxia: a simple and feasible biosampling method[J]. Pediatr Res, 2016, 79(5): 799-805.
[46]
Di Y, Lei Y, Yu F, et al. MicroRNAs expression and function in cerebral ischemia reperfusion injury[J]. J Mol Neurosci, 2014, 53(2): 242-250.
[47]
Yin KJ, Deng Z, Hamblin M, et al. Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury[J]. J Neurosci, 2010, 30(18): 6398-6408.
[48]
Ma Q, Zhang L. Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia[J]. Prog Neurobiol, 2015, 124: 28-48.
[49]
Xu CH, Liu Y, Xiao LM, et al. Silencing microRNA-221/222 cluster suppresses glioblastoma angiogenesis by suppressor of cytokine signaling-3-dependent JAK/STAT pathway[J]. J Cell Physiol, 2019, 234(12): 22272-22284.
[50]
Hromadnikova I, Kotlabova K, Ivankova K, et al. Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction[J]. Int J Cardiol, 2017, 249: 402-409.
[51]
Song J, Ouyang Y, Che J, et al. Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases[J]. Front Immunol, 2017, 8: 56.
[52]
Wang XH, Li LJ, Sun GX, et al. Expressions of miR-132, miR-134, and miR-485 in rat primary motor cortex during transhemispheric functional reorganization after contralateral seventh cervical spinal nerve root transfer following brachial plexus avulsion injuries[J]. Neuroreport, 2016, 27(1): 12-17.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[3] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[4] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[5] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[6] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[7] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[8] 徐瑜杰, 赵国栋. 晚期胃癌治疗方法的研究进展和挑战[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 451-455.
[9] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[10] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[11] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[12] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[13] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[14] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[15] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
阅读次数
全文


摘要