切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (02) : 125 -131. doi: 10.3877/cma.j.issn.1673-5250.2022.02.001

专题论坛

液体活检在新生儿脑损伤诊断及预后判断中的应用和展望
刘仕茜, 屈艺(), 应俊杰, 母得志   
  1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2021-12-30 修回日期:2022-03-21 出版日期:2022-04-01
  • 通信作者: 屈艺

Application and prospect of liquid biopsy in diagnosis and prognostic evaluation of neonatal brain injury

Shixi Liu, Yi Qu(), Junjie Ying, Dezhi Mu   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, West China Second University Hospital, Chengdu 610041, Sichuan Province, China
  • Received:2021-12-30 Revised:2022-03-21 Published:2022-04-01
  • Corresponding author: Yi Qu
  • Supported by:
    National Natural Science Foundation of China(81701500, 81771634, 81971428)
引用本文:

刘仕茜, 屈艺, 应俊杰, 母得志. 液体活检在新生儿脑损伤诊断及预后判断中的应用和展望[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 125-131.

Shixi Liu, Yi Qu, Junjie Ying, Dezhi Mu. Application and prospect of liquid biopsy in diagnosis and prognostic evaluation of neonatal brain injury[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(02): 125-131.

液体活检(LB)是一种利用人体体液获取疾病诊治相关信息的技术,已在多个领域,尤其是肿瘤诊治领域广泛开展,并取得突破性进展。LB在新生儿脑损伤,如颅内出血、新生儿缺氧缺血性脑损伤(HIBD)及早产儿脑白质损伤等诊断中的应用已有开展。笔者拟就LB在新生儿脑损伤诊断及预后判断中的优势、应用现状等最新研究进展进行阐述,旨在为临床对新生儿脑损伤的诊断及预后判断提供参考。

Liquid biopsies (LB), a technique using human body fluids to obtain disease information, has been widely carried out in multiple fields and made breakthrough progress, especially in tumor diagnosis and treatment. The application of LB has been developed in the diagnosis of neonatal brain injury, such as intracranial hemorrhage, neonatal hypoxic-ischemic brain damage (HIBD), and brain white matter injury in preterm infants. We intend to describe the latest research progresses of advantages and current application statuses of LB in diagnosis and prognosis evaluation of neonatal brain injury, in order to provide reference for clinical diagnosis and prognosis evaluation of neonatal brain injury.

表1 外泌体生物标志物与神经系统疾病诊断的关系
表2 目前临床用于新生儿脑损伤诊断中,主要涉及的相关游离血液生物标志物
[1]
Sorrells RB. Synovioanalysis (" liquid biopsy" )[J]. J Ark Med Soc, 1974, 71(1): 59-62.
[2]
Cheung AH, Chow C, To KF. Latest development of liquid biopsy[J]. J Thorac Dis, 2018, 10(Suppl 14): S1645-S1651. DOI: 10.21037/jtd.2018.04.68.
[3]
Graham EM, Burd I, Everett AD, et al. Blood biomarkers for evaluation of perinatal encephalopathy[J]. Front Pharmacol, 2016, 7: 196. DOI: 10.3389/fphar.2016.00196.
[4]
Massaro AN, Wu YW, Bammler TK, et al. Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy[J]. J Pediatr, 2018, 194: 67.e1-75.e1. DOI: 10.1016/j.jpeds.2017.10.060.
[5]
Lv H, Wang Q, Wu S, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid[J]. Clin Chim Acta, 2015, 450: 282-297. DOI: 10.1016/j.cca.2015.08.021.
[6]
Graham EM, Everett AD, Delpech JC, et al. Blood biomarkers for evaluation of perinatal encephalopathy: state of the art[J]. Curr Opin Pediatr, 2018, 30(2): 199-203. DOI: 10.1097/MOP.0000000000000591.
[7]
Chen Y, Song Y, Huang J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke[J]. Front Neurol, 2017, 8: 57. DOI: 10.3389/fneur.2017.00057.
[8]
陈小娜,姜毅. 2018昆士兰临床指南:缺氧缺血性脑病介绍[J]. 中华新生儿科杂志2019, 34(1): 77-78. DOI: 10.3760/cma.j.issn.2096-2932.2019.01.019.
[9]
Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future[J]. Acta Neurol Belg, 2020, 120(2): 277-288. DOI: 10.1007/s13760-020-01308-3.
[10]
Bano S, Chaudhary V, Garga UC. Neonatal hypoxic-ischemic encephalopathy: a radiological review[J]. J Pediatr Neurosci, 2017, 12(1): 1-6. DOI: 10.4103/1817-1745.205646.
[11]
Goetzl L, Merabova N, Darbinian N, et al. Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury[J]. Ann Clin Transl Neurol, 2018, 5(1): 4-10. DOI: 10.1002/acn3.499.
[12]
Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5(1): 32945. DOI: 10.3402/jev.v5.32945.
[13]
Graner MW, Epple LM, Dusto NL, et al. Circulating exosomes as new biomarkers for brain disease and injury[C]// Conference on sensing technologies for global health, military medicine, and environmental monitoring Ⅲ,2013. DOI: 10.1117/12.2027435.
[14]
Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid[J]. Alzheimers Dement, 2019, 15(8): 1071-1080. DOI: 10.1016/j.jalz.2019.05.002.
[15]
Muller L, Hong CS, Stolz DB, et al. Isolation of biologically-active exosomes from human plasma[J]. J Immunol Methods, 2014, 411: 55-65. DOI: 10.1016/j.jim.2014.06.007.
[16]
Devoto C, Arcurio L, Fetta J, et al. Inflammation relates to chronic behavioral and neurological symptoms in military personnel with traumatic brain injuries[J]. Cell Transplant, 2017, 26(7): 1169-1177. DOI: 10.1177/0963689717714098.
[17]
Gurunathan S, Kang MH, Kim JH. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine, 2021, 16: 1281-1312. DOI: 10.2147/IJN.S291956.
[18]
Dinkins MB, Wang G, Bieberich E. Sphingolipid-enriched extracellular vesicles and Alzheimer′s disease: a decade of research[J]. J Alzheimers Dis, 2017, 60(3): 757-768. DOI: 10.3233/JAD-160567.
[19]
Kodidela S, Gerth K, Sinha N, et al. Circulatory astrocyte and neuronal EVs as potential biomarkers of neurological dysfunction in HIV-infected subjects and alcohol/tobacco users[J]. Diagnostics (Basel), 2020, 10(6): 349. DOI: 10.3390/diagnostics10060349.
[20]
Kawata K, Mitsuhashi M, Aldret R. A preliminary report on brain-derived extracellular vesicle as novel blood biomarkers for sport-related concussions[J]. Front Neurol, 2018, 9: 239. DOI: 10.3389/fneur.2018.00239.
[21]
Mondello S, Guedes VA, Lai C, et al. Circulating brain injury exosomal proteins following moderate-to-severe traumatic brain injury: temporal profile, outcome prediction and therapy implications[J]. Cells, 2020, 9(4): 977. DOI: 10.3390/cells9040977.
[22]
Galazka G, Mycko MP, Selmaj I, et al. Multiple sclerosis: serum-derived exosomes express myelin proteins[J]. Mult Scler, 2018, 24(4): 449-458. DOI: 10.1177/1352458517696597.
[23]
Kumar A, Stoica BA, Loane DJ, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury[J]. J Neuroinflammation, 2017, 14(1): 47. DOI: 10.1186/s12974-017-0819-4.
[24]
Ji Q, Ji Y, Peng J, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients[J]. PLoS One, 2016, 11(9): e0163645. DOI: 10.1371/journal.pone.0163645.
[25]
Li DB, Liu JL, Wang W, et al. Plasma exosomal miR-422a and miR-125b-2-3p serve as biomarkers for ischemic stroke[J]. Curr Neurovasc Res, 2017, 14(4): 330-337. DOI: 10.2174/1567202614666171005153434.
[26]
Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal microRNA-21-5p and microRNA-30a-5p[J]. Cerebrovasc Dis, 2018, 45(5-6): 204-212. DOI: 10.1159/000488365.
[27]
Papa L, Ramia MM, Edwards D, et al. Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion[J]. J Neurotrauma, 2015, 32(10): 661-673. DOI: 10.1089/neu.2014.3655.
[28]
Maggiotto LV, Sondhi M, Shin BC, et al. Circulating blood cellular glucose transporters-surrogate biomarkers for neonatal hypoxic-ischemic encephalopathy assessed by novel scoring systems[J]. Mol Genet Metab, 2019, 127(2): 166-173. DOI: 10.1016/j.ymgme.2019.05.013.
[29]
Daverey A, Agrawal SK. Neuroprotective effects of riluzole and curcumin in human astrocytes and spinal cord white matter hypoxia[J]. Neurosci Lett, 2020, 738: 135351. DOI: 10.1016/j.neulet.2020.135351.
[30]
Beers SR, Berger RP, Adelson PD. Neurocognitive outcome and serum biomarkers in inflicted versus non-inflicted traumatic brain injury in young children[J]. J Neurotrauma, 2007, 24(1): 97-105. DOI: 10.1089/neu.2006.0055.
[31]
Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3): 959-966. DOI: 10.1161/STROKEAHA.107.500736.
[32]
Douglas-Escobar MV, Heaton SC, Bennett J, et al. UCH-L1 and GFAP serum levels in neonates with hypoxic-ischemic encephalopathy: a single center pilot study[J]. Front Neurol, 2014, 5: 273. DOI: 10.3389/fneur.2014.00273.
[33]
Cho KHT, Wassink G, Galinsky R, et al. Protective effects of delayed intraventricular TLR7 agonist administration on cerebral white and gray matter following asphyxia in the preterm fetal sheep[J]. Sci Rep, 2019, 9(1): 9562. DOI: 10.1038/s41598-019-45872-y.
[34]
Papa L, Silvestri S, Brophy GM, et al. GFAP out-performs S100beta in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions[J]. J Neurotrauma, 2014, 31(22): 1815-1822. DOI: 10.1089/neu.2013.3245.
[35]
Ennen CS, Huisman TA, Savage WJ, et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling[J]. Am J Obstet Gynecol, 2011, 205(3): 251.e1-251.e7. DOI: 10.1016/j.ajog.2011.06.025.
[36]
McMahon PJ, Panczykowski DM, Yue JK, et al. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging[J]. J Neurotrauma, 2015, 32(8): 527-533. DOI: 10.1089/neu.2014.3635.
[37]
Rangon CM, Schang AL, Van Steenwinckel J, et al. Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury[J]. Brain Behav Immun, 2018, 74: 265-276. DOI: 10.1016/j.bbi.2018.09.017.
[38]
Zhou W, Li W, Qu LH, et al. Relationship of plasma S100B and MBP with brain damage in preterm infants[J]. Int J Clin Exp Med, 2015, 8(9): 16445-16453.
[39]
Goetzl L, Darbinian N, Merabova N. Noninvasive assessment of fetal central nervous system insult: potential application to prenatal diagnosis[J]. Prenat Diagn, 2019, 39(8): 609-615. DOI: 10.1002/pd.5474.
[40]
Ma Q, Dasgupta C, Li Y, et al. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats[J]. Neurobiol Dis, 2016, 89: 202-212. DOI: 10.1016/j.nbd.2016.02.011.
[41]
Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury[J]. Clin Chem, 2009, 55(11): 1977-1983. DOI: 10.1373/clinchem.2009.131797.
[42]
Weng H, Shen C, Hirokawa G, et al. Plasma miR-124 as a biomarker for cerebral infarction[J]. Biomed Res, 2011, 32(2): 135-141. DOI: 10.2220/biomedres.32.135.
[43]
Sun Y, Luo ZM, Guo XM, et al. An updated role of microRNA-124 in central nervous system disorders: a review[J]. Front Cell Neurosci, 2015, 9: 193. DOI: 10.3389/fncel.2015.00193.
[44]
Huang SH, Wang L, Chi F, et al. Circulating brain microvascular endothelial cells (cBMECs) as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors[J]. PLoS One, 2013, 8(4): e62164. DOI: 10.1371/journal.pone.0062164.
[45]
李妍,杜蕾,袁霖,等. 外周血中血脑屏障损伤新型标记物脑微血管内皮细胞检测方法的建立[J]. 南方医科大学学报2014, 34(12): 1733-1737. DOI: 10.3969/j.issn.1673-4254.2014.12.05.
[46]
甘浪舸,李祥攀,阮林,等. 循环内皮细胞和放射性脑损伤的关系[J]. 中华肿瘤防治杂志2007, 14(5): 352-354. DOI: 10.3969/j.issn.1673-5269.2007.05.010.
[47]
Pourcyrous M, Basuroy S, Tcheranova D, et al. Brain-derived circulating endothelial cells in peripheral blood of newborn infants with seizures: a potential biomarker for cerebrovascular injury[J]. Physiol Rep, 2015, 3(3): e12345. DOI: 10.14814/phy2.12345.
[48]
Rainer TH, Wong LK, Lam W, et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke[J]. Clin Chem, 2003, 49(4): 562-569. DOI: 10.1373/49.4.562.
[49]
Regner A, Meirelles LDS, Ikuta N, et al. Prognostic utility of circulating nucleic acids in acute brain injuries[J]. Expert Rev Mol Diagn, 2018, 18(11): 925-938. DOI: 10.1080/14737159.2018.1535904.
[50]
Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA[J]. Proc Natl Acad Sci USA, 2016, 113(13):1826-1834. DOI: 10.1073/pnas.1519286113.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 何淳诺, 田志敏, 李焕玺, 吴昊越, 庄凯鹏, 周胜虎, 张浩强. 小儿发育性髋关节发育不良诊治的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
[3] 徐婷婷, 詹泳池, 王晓东, 刘兴会. 电子胎心监测结果出现正弦波形的胎母输血综合征围生期结局分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 382-389.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 郑伟军, 郑超, 方一凡, 吴典明, 王翔, 陈飞, 刘明坤. 新生儿急性阑尾炎17例诊治分析并文献回顾[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 291-293.
[7] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[8] 赵静, 范晔, 游雅婷, 陈慧, 王静, 张静. 虚拟支气管镜导航联合径向超声支气管镜在周围型肺癌中的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 524-528.
[9] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[12] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[13] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[14] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[15] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?