[1] |
Sorrells RB. Synovioanalysis (" liquid biopsy" )[J]. J Ark Med Soc, 1974, 71(1): 59-62.
|
[2] |
Cheung AH, Chow C, To KF. Latest development of liquid biopsy[J]. J Thorac Dis, 2018, 10(Suppl 14): S1645-S1651. DOI: 10.21037/jtd.2018.04.68.
|
[3] |
Graham EM, Burd I, Everett AD, et al. Blood biomarkers for evaluation of perinatal encephalopathy[J]. Front Pharmacol, 2016, 7: 196. DOI: 10.3389/fphar.2016.00196.
|
[4] |
Massaro AN, Wu YW, Bammler TK, et al. Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy[J]. J Pediatr, 2018, 194: 67.e1-75.e1. DOI: 10.1016/j.jpeds.2017.10.060.
|
[5] |
Lv H, Wang Q, Wu S, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid[J]. Clin Chim Acta, 2015, 450: 282-297. DOI: 10.1016/j.cca.2015.08.021.
|
[6] |
Graham EM, Everett AD, Delpech JC, et al. Blood biomarkers for evaluation of perinatal encephalopathy: state of the art[J]. Curr Opin Pediatr, 2018, 30(2): 199-203. DOI: 10.1097/MOP.0000000000000591.
|
[7] |
Chen Y, Song Y, Huang J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke[J]. Front Neurol, 2017, 8: 57. DOI: 10.3389/fneur.2017.00057.
|
[8] |
|
[9] |
Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future[J]. Acta Neurol Belg, 2020, 120(2): 277-288. DOI: 10.1007/s13760-020-01308-3.
|
[10] |
Bano S, Chaudhary V, Garga UC. Neonatal hypoxic-ischemic encephalopathy: a radiological review[J]. J Pediatr Neurosci, 2017, 12(1): 1-6. DOI: 10.4103/1817-1745.205646.
|
[11] |
Goetzl L, Merabova N, Darbinian N, et al. Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury[J]. Ann Clin Transl Neurol, 2018, 5(1): 4-10. DOI: 10.1002/acn3.499.
|
[12] |
Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5(1): 32945. DOI: 10.3402/jev.v5.32945.
|
[13] |
Graner MW, Epple LM, Dusto NL, et al. Circulating exosomes as new biomarkers for brain disease and injury[C]// Conference on sensing technologies for global health, military medicine, and environmental monitoring Ⅲ, 2013. DOI: 10.1117/12.2027435.
|
[14] |
Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid[J]. Alzheimers Dement, 2019, 15(8): 1071-1080. DOI: 10.1016/j.jalz.2019.05.002.
|
[15] |
Muller L, Hong CS, Stolz DB, et al. Isolation of biologically-active exosomes from human plasma[J]. J Immunol Methods, 2014, 411: 55-65. DOI: 10.1016/j.jim.2014.06.007.
|
[16] |
Devoto C, Arcurio L, Fetta J, et al. Inflammation relates to chronic behavioral and neurological symptoms in military personnel with traumatic brain injuries[J]. Cell Transplant, 2017, 26(7): 1169-1177. DOI: 10.1177/0963689717714098.
|
[17] |
Gurunathan S, Kang MH, Kim JH. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine, 2021, 16: 1281-1312. DOI: 10.2147/IJN.S291956.
|
[18] |
Dinkins MB, Wang G, Bieberich E. Sphingolipid-enriched extracellular vesicles and Alzheimer′s disease: a decade of research[J]. J Alzheimers Dis, 2017, 60(3): 757-768. DOI: 10.3233/JAD-160567.
|
[19] |
Kodidela S, Gerth K, Sinha N, et al. Circulatory astrocyte and neuronal EVs as potential biomarkers of neurological dysfunction in HIV-infected subjects and alcohol/tobacco users[J]. Diagnostics (Basel), 2020, 10(6): 349. DOI: 10.3390/diagnostics10060349.
|
[20] |
Kawata K, Mitsuhashi M, Aldret R. A preliminary report on brain-derived extracellular vesicle as novel blood biomarkers for sport-related concussions[J]. Front Neurol, 2018, 9: 239. DOI: 10.3389/fneur.2018.00239.
|
[21] |
Mondello S, Guedes VA, Lai C, et al. Circulating brain injury exosomal proteins following moderate-to-severe traumatic brain injury: temporal profile, outcome prediction and therapy implications[J]. Cells, 2020, 9(4): 977. DOI: 10.3390/cells9040977.
|
[22] |
Galazka G, Mycko MP, Selmaj I, et al. Multiple sclerosis: serum-derived exosomes express myelin proteins[J]. Mult Scler, 2018, 24(4): 449-458. DOI: 10.1177/1352458517696597.
|
[23] |
Kumar A, Stoica BA, Loane DJ, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury[J]. J Neuroinflammation, 2017, 14(1): 47. DOI: 10.1186/s12974-017-0819-4.
|
[24] |
Ji Q, Ji Y, Peng J, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients[J]. PLoS One, 2016, 11(9): e0163645. DOI: 10.1371/journal.pone.0163645.
|
[25] |
Li DB, Liu JL, Wang W, et al. Plasma exosomal miR-422a and miR-125b-2-3p serve as biomarkers for ischemic stroke[J]. Curr Neurovasc Res, 2017, 14(4): 330-337. DOI: 10.2174/1567202614666171005153434.
|
[26] |
Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal microRNA-21-5p and microRNA-30a-5p[J]. Cerebrovasc Dis, 2018, 45(5-6): 204-212. DOI: 10.1159/000488365.
|
[27] |
Papa L, Ramia MM, Edwards D, et al. Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion[J]. J Neurotrauma, 2015, 32(10): 661-673. DOI: 10.1089/neu.2014.3655.
|
[28] |
Maggiotto LV, Sondhi M, Shin BC, et al. Circulating blood cellular glucose transporters-surrogate biomarkers for neonatal hypoxic-ischemic encephalopathy assessed by novel scoring systems[J]. Mol Genet Metab, 2019, 127(2): 166-173. DOI: 10.1016/j.ymgme.2019.05.013.
|
[29] |
Daverey A, Agrawal SK. Neuroprotective effects of riluzole and curcumin in human astrocytes and spinal cord white matter hypoxia[J]. Neurosci Lett, 2020, 738: 135351. DOI: 10.1016/j.neulet.2020.135351.
|
[30] |
Beers SR, Berger RP, Adelson PD. Neurocognitive outcome and serum biomarkers in inflicted versus non-inflicted traumatic brain injury in young children[J]. J Neurotrauma, 2007, 24(1): 97-105. DOI: 10.1089/neu.2006.0055.
|
[31] |
Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3): 959-966. DOI: 10.1161/STROKEAHA.107.500736.
|
[32] |
Douglas-Escobar MV, Heaton SC, Bennett J, et al. UCH-L1 and GFAP serum levels in neonates with hypoxic-ischemic encephalopathy: a single center pilot study[J]. Front Neurol, 2014, 5: 273. DOI: 10.3389/fneur.2014.00273.
|
[33] |
Cho KHT, Wassink G, Galinsky R, et al. Protective effects of delayed intraventricular TLR7 agonist administration on cerebral white and gray matter following asphyxia in the preterm fetal sheep[J]. Sci Rep, 2019, 9(1): 9562. DOI: 10.1038/s41598-019-45872-y.
|
[34] |
Papa L, Silvestri S, Brophy GM, et al. GFAP out-performs S100beta in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions[J]. J Neurotrauma, 2014, 31(22): 1815-1822. DOI: 10.1089/neu.2013.3245.
|
[35] |
Ennen CS, Huisman TA, Savage WJ, et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling[J]. Am J Obstet Gynecol, 2011, 205(3): 251.e1-251.e7. DOI: 10.1016/j.ajog.2011.06.025.
|
[36] |
McMahon PJ, Panczykowski DM, Yue JK, et al. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging[J]. J Neurotrauma, 2015, 32(8): 527-533. DOI: 10.1089/neu.2014.3635.
|
[37] |
Rangon CM, Schang AL, Van Steenwinckel J, et al. Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury[J]. Brain Behav Immun, 2018, 74: 265-276. DOI: 10.1016/j.bbi.2018.09.017.
|
[38] |
Zhou W, Li W, Qu LH, et al. Relationship of plasma S100B and MBP with brain damage in preterm infants[J]. Int J Clin Exp Med, 2015, 8(9): 16445-16453.
|
[39] |
Goetzl L, Darbinian N, Merabova N. Noninvasive assessment of fetal central nervous system insult: potential application to prenatal diagnosis[J]. Prenat Diagn, 2019, 39(8): 609-615. DOI: 10.1002/pd.5474.
|
[40] |
Ma Q, Dasgupta C, Li Y, et al. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats[J]. Neurobiol Dis, 2016, 89: 202-212. DOI: 10.1016/j.nbd.2016.02.011.
|
[41] |
Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury[J]. Clin Chem, 2009, 55(11): 1977-1983. DOI: 10.1373/clinchem.2009.131797.
|
[42] |
Weng H, Shen C, Hirokawa G, et al. Plasma miR-124 as a biomarker for cerebral infarction[J]. Biomed Res, 2011, 32(2): 135-141. DOI: 10.2220/biomedres.32.135.
|
[43] |
Sun Y, Luo ZM, Guo XM, et al. An updated role of microRNA-124 in central nervous system disorders: a review[J]. Front Cell Neurosci, 2015, 9: 193. DOI: 10.3389/fncel.2015.00193.
|
[44] |
Huang SH, Wang L, Chi F, et al. Circulating brain microvascular endothelial cells (cBMECs) as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors[J]. PLoS One, 2013, 8(4): e62164. DOI: 10.1371/journal.pone.0062164.
|
[45] |
|
[46] |
|
[47] |
Pourcyrous M, Basuroy S, Tcheranova D, et al. Brain-derived circulating endothelial cells in peripheral blood of newborn infants with seizures: a potential biomarker for cerebrovascular injury[J]. Physiol Rep, 2015, 3(3): e12345. DOI: 10.14814/phy2.12345.
|
[48] |
Rainer TH, Wong LK, Lam W, et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke[J]. Clin Chem, 2003, 49(4): 562-569. DOI: 10.1373/49.4.562.
|
[49] |
Regner A, Meirelles LDS, Ikuta N, et al. Prognostic utility of circulating nucleic acids in acute brain injuries[J]. Expert Rev Mol Diagn, 2018, 18(11): 925-938. DOI: 10.1080/14737159.2018.1535904.
|
[50] |
Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA[J]. Proc Natl Acad Sci USA, 2016, 113(13):1826-1834. DOI: 10.1073/pnas.1519286113.
|