切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (01) : 32 -41. doi: 10.3877/cma.j.issn.1673-5250.2020.01.005

所属专题: 文献

论著

Sestrin2参与调控新生鼠缺氧缺血性脑损伤后细胞自噬机制
马慧顺1, 陈洪菊1,(), 唐军1   
  1. 1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2018-12-29 修回日期:2019-08-30 出版日期:2020-02-01
  • 通信作者: 陈洪菊

Mechanisms of Sestrin2 regulating cell autophagy after hypoxic-ischemic brain damage in neonatal rats

Huishun Ma1, Hongju Chen1,(), Jun Tang1   

  1. 1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2018-12-29 Revised:2019-08-30 Published:2020-02-01
  • Corresponding author: Hongju Chen
  • About author:
    Corresponding author: Chen Hongju, Email:
  • Supported by:
    National Natural Science Foundation of China(81501304, 81330016, 81630038, 81771634, 81842011); National Clinical Key Professional Fund(1311200003303); Youth Technology Innovation Team Fund of Sichuan Province(2016TD0002)
引用本文:

马慧顺, 陈洪菊, 唐军. Sestrin2参与调控新生鼠缺氧缺血性脑损伤后细胞自噬机制[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(01): 32-41.

Huishun Ma, Hongju Chen, Jun Tang. Mechanisms of Sestrin2 regulating cell autophagy after hypoxic-ischemic brain damage in neonatal rats[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(01): 32-41.

目的

探讨应激诱导蛋白Sestrin2,对新生SD大鼠缺氧缺血性脑损伤(HIBD)后神经细胞自噬作用及其机制。

方法

选择80只新生10日龄SD大鼠(受试鼠)为研究对象。对其中60只建立HIBD模型,并根据这60只受试鼠缺氧缺血(HI)后的处死时间点,将其分别纳入HI后4、8、12、24、72 h组(除HI后24 h组为20只受试鼠外,其余均为10只)。对剩余的20只受试鼠仅分离右颈总动脉,既不结扎右颈总动脉,亦不进行缺氧处理,处死时间对应于HI后24 h组,纳入假手术组(n=20)。①对HI后4、8、12、24、72 h组及假手术组(各组受试鼠均为10只),获取海马组织标本后,采用蛋白质印迹法,检测Sestrin2、肝酶B1(LKB1)、磷酸化LKB1(p-LKB1)、AMP活化蛋白激酶(AMPK)、磷酸化AMPK(p-AMPK)、哺乳动物雷帕霉素靶蛋白(mTOR)、磷酸化mTOR(p-mTOR)、自噬相关蛋白Beclin1、微管相关蛋白1轻链(LC)3及凋亡相关蛋白活化型天冬氨酸特异性半胱氨酸蛋白酶(CC)3在受试鼠海马组织中的相对表达量,并采用方差分析及最小显著性差异(LSD)-t法,对上述指标进行6组之间,或HI后4、8、12、24、72 h组分别与假手术组的组间比较。②对于HI后24 h组与假手术组各组剩余的10只受试鼠,获取大脑标本后,采用免疫组织化学SP法,检测海马组织中p-AMPK、LC3及CC3表达水平,包括积分吸光度(IA)值测定及染色结果,并采用t检验,对这3项指标的IA值进行2组比较。本研究通过四川大学动物实验伦理委员会批准[审批文号:SYXK(川)2013-185]。

结果

①蛋白质印迹法检测结果显示,HI后4、8 h组受试鼠海马组织中p-mTOR及CC3水平,均分别高于假手术组;HI后12、24 h组受试鼠海马组织中Sestrin2、p-LKB1、p-AMPK、p-mTOR、Beclin1、LC3及CC3水平,均分别高于假手术组;HI后72 h组受试鼠海马组织中Sestrin2及CC3水平,均高于假手术组;并且这些差异均有统计学意义(P<0.05)。其中,HI后8 h组受试鼠海马组织中p-mTOR水平最高,HI后24 h组受试鼠海马组织中Sestrin2、p-LKB1、p-AMPK、Beclin1、LC3及CC3水平均最高。6组受试鼠海马组织中LKB1、AMPK及mTOR水平比较,以及HI后4、8、12、24、72 h组受试鼠海马组织中LKB1、AMPK及mTOR水平分别与假手术组比较,差异均无统计学意义(P>0.05)。②免疫组织化学SP法IA值检测结果显示,HI后24 h组受试鼠海马组织中p-AMPK、LC3及CC3表达水平分别为(24 106±2 393)、(41 892±4 094)、(61 670±4 696),均高于假手术组的(15 593±1 575)、(18 941±2 131)、(20 279±1 912),并且差异有统计学意义(t=9.398、P=0.035,t=15.723、P<0.001,t=25.812、P<0.001)。免疫组织化学SP法染色结果显示,HI后24 h组受试鼠海马组织中p-AMPK、LC3及CC3呈阳性细胞的表达水平较高。

结论

10日龄新生SD大鼠发生HIBD时,其大脑海马组织中Sestrin2可能通过LKB1/AMPK/mTOR信号通路,参与调节神经细胞自噬及凋亡。

Objective

To investigate the role and mechanism of stress-inducing protein Sestrin2 in the regulation of nerve cell autophagy in neonatal rats after hypoxic-ischemic brain damage (HIBD).

Methods

Eighty postnatal 10 days newborn Sprague-Dawley rats (test rats) were selected as research subjects. For the 60 test rats, the HIBD model was established; then according to the sacrifice time of 4, 8, 12, 24, 72 h after hypoxia-ischemia (HI), 60 test rats were included into 4, 8, 12, 24, 72 h after HI group, which was 20 cases in 24 h after HI group and the rest were 10 cases in each group. For the remaining 20 test rats, the right common carotid artery was separated but not ligated, no hypoxia treatment was performed and the sacrifice time corresponded to 24 h after HI group, and they were included into sham operation group (n=20). ① After obtained hippocampal tissue samples of rats in 4, 8, 12, 24, 72 h after HI group and sham operation group (10 cases in each group), western blotting was used to detect relative expression levels of Sestrin2, liver kinase B1 (LKB1), phosphorylated LKB1 (p-LKB1), adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), autophagy-related protein Beclin1, microtubule-associated protein 1 light chain (LC)3, and apoptosis-related protein cleaved-caspase 3 (CC3) in hippocampus tissue of rats, and analysis of variance and least significant difference (LSD)-t methods were used to compare the above indicators among 6 groups or between 4, 8, 12, 24, 72 h after HI groups and sham operation group, respectively. ② After obtained cerebrum samples of remaining rats in 24 h after HI group and sham operation group (10 cases in each group), immunohistochemistry SP method was used to detect the expression levels of p-AMPK, LC3 and CC3, including integrated absorbance (IA) values and staining results in rats′ hippocampus tissue. And using t test to compare the IA values of the three indicators between two groups. This study was approved by the Animal Experimental Ethics Committee of Sichuan University [Approval No. SYXK (Chuan) 2013-185].

Results

① The results of western blotting showed that the levels of p-mTOR and CC3 in rats′ hippocampus tissue of 4 h and 8 h after HI groups were higher than those in sham operation group, respectively; the levels of Sestrin2, p-LKB1, p-AMPK, p-mTOR, Beclin1, LC3 and CC3 in rats′ hippocampus tissue of 12 h and 24 h after HI groups were higher than those in sham operation group, respectively; the levels of Sestrin2 and CC3 in rats′ hippocampus tissue of 72 h group after HI group were higher than those in sham operation group; and all of these differences were statistically significant (P<0.05). Among them, the level of p-mTOR was the highest in rats′ hippocampus tissue of 8 h after HI group; and the highest levels of Sestrin2, p-LKB1, p-AMPK, Beclin1, LC3 and CC3 in rats′ hippocampus tissue were all in 24 h after HI group. There were no significant differences among 6 groups, also between 4, 8, 12, 24, 72 h after HI groups with sham operation group, respectively, in levels of LKB1, AMPK and mTOR in rats′ hippocampus tissue (P>0.05). ② IA value detected results of immunohistochemical SP method showed that the expression levels of p-AMPK, LC3 and CC3 in rats′ hippocampus tissue of 24 h after HI group were (24 106±2 393), (41 892±4 094), (61 670±4 696), respectively, which were higher than those of (15 593±1 575), (18 941±2 131) and (20 279±1 912) in sham operation group, and the differences were statistically significant (t=9.398, P=0.035; t=15.723, P<0.001; t=25.812, P<0.001). Immunohistochemical SP method staining results showed that the expression level of p-AMPK, LC3 and CC3 positive cells were higher in rats′ hippocampus tissue of 24 h after HI group.

Conclusion

When HIBD occurs in postnatal 10 days newborn SD rats, the Sestrin2 in hippocampus tissue may be involved in the regulation of nerve cell autophagy and apoptosis via LKB1/AMPK/mTOR signaling pathway.

表1 6组受试鼠海马组织中各蛋白相对表达量比较(±s)
组别 鼠数 Sestrin2 LKB1 p-LKB1 AMPK p-AMPK
①HI后4 h组 10 0.21±0.03 1.44±0.11 0.44±0.09 1.90±0.18 0.51±0.08
②HI后8 h组 10 0.19±0.03 1.39±0.08 0.38±0.07 1.79±0.10 0.45±0.06
③HI后12 h组 10 0.41±0.06 1.48±0.13 0.70±0.10 1.89±0.17 0.80±0.06
④HI后24 h组 10 0.50±0.06 1.41±0.14 1.09±0.12 1.80±0.19 1.01±0.09
⑤HI后72 h组 10 0.40±0.06 1.37±0.14 0.53±0.08 1.78±0.12 0.66±0.09
⑥假手术组 10 0.17±0.03 1.38±0.11 0.39±0.07 1.76±0.12 0.45±0.05
总体比较 ? ? ? ? ? ?
? F ? 82.781 1.154 93.335 1.360 92.327
? P ? <0.001 0.344 <0.001 0.254 <0.001
多重比较的Pa ? ? ? ? ? ?
? vs ? 0.052 0.254 0.222 0.059 0.133
? vs ? 0.252 0.835 0.802 0.663 0.903
? vs ? 0.023 0.082 0.034 0.082 0.025
? vs ? 0.014 0.545 0.018 0.562 0.013
? vs ? 0.025 0.818 0.086 0.847 0.076
组别 鼠数 mTOR p-mTOR Beclin1 LC3 CC3
①HI后4 h组 10 1.34±0.09 0.44±0.06 0.23±0.04 0.33±0.04 0.29±0.04
②HI后8 h组 10 1.29±0.15 0.83±0.07 0.20±0.07 0.31±0.05 0.36±0.06
③HI后12 h组 10 1.27±0.12 0.61±0.05 0.37±0.07 0.61±0.04 0.51±0.05
④HI后24 h组 10 1.23±0.11 0.55±0.07 0.63±0.05 0.76±0.06 0.69±0.08
⑤HI后72 h组 10 1.25±0.09 0.38±0.04 0.30±0.06 0.53±0.07 0.50±0.06
⑥假手术组 10 1.26±0.14 0.36±0.05 0.19±0.03 0.29±0.03 0.22±0.04
总体比较 ? ? ? ? ? ?
? F ? 0.898 85.534 88.384 143.492 82.375
? P ? 0.490 <0.001 <0.001 <0.001 <0.001
多重比较的Pa ? ? ? ? ? ?
? vs ? 0.138 0.011 0.117 0.121 0.014
? vs ? 0.575 <0.001 0.580 0.438 <0.001
? vs ? 0.751 <0.001 0.044 0.036 <0.001
? vs ? 0.696 <0.001 <0.001 <0.001 <0.001
? vs ? 0.928 0.562 0.068 0.057 <0.001
图1 6组受试鼠海马组织中各蛋白电泳图(蛋白质印迹法)
表2 2组受试鼠海马组织中p-AMPK、LC3及CC3积分吸光度值比较(±s)
图2 10日龄SD大鼠海马组织免疫组织化学图(SP法,高倍镜)[图2A、2B、2C分别为HI后24 h组p-AMPK、LC3、CC3呈阳性的细胞表达水平较高(箭头所示);图2D、2E、2F分别为假手术组p-AMPK、LC3、CC3呈阳性的细胞均为微量表达]
[1]
Nasiell J, Papadogiannakis N, Löf E, et al. Hypoxic ischemic encephalopathy in newborns linked to placental and umbilical cord abnormalities[J]. J Matern Fetal Neonatal Med, 2016, 29(5):721-726. DOI: 10.3109/14767058.2015.1015984.
[2]
Chen H, Qu Y, Tang B, et al. Role of mammalian target of rapamycin in hypoxic or ischemic brain injury: potential neuroprotection and limitations[J]. Rev Neurosci, 2012, 23(3):279-287. DOI: 10.1515/revneuro-2012-0001.
[3]
Puyal J, Ginet V, Grishchuk Y, et al. Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders[J]. Neuroscientist, 2012, 18(3):224-236. DOI: 10.1177/1073858411404948.
[4]
Chen H, Xiong T, Qu Y, et al. mTOR activates hypoxia-inducible factor-1α and inhibits neuronal apoptosis in the developing rat brain during the early phase after hypoxia-ischemia[J]. Neurosci Lett, 2012, 507(2):118-123. DOI: 10.1016/j.neulet.2011.11.058.
[5]
Chang HW, Lee YS, Nam HY, et al. Knockdown of β-catenin controls both apoptotic and autophagic cell death through LKB1/AMPK signaling in head and neck squamous cell carcinoma cell lines[J]. Cell Signal, 2013, 25(4):839-847. DOI: 10.1016/j.cellsig.2012.12.020.
[6]
Xiao X, He Q, Lu C, et al. Metformin impairs the growth of liver kinase B1-intact cervical cancer cells[J]. Gynecol Oncol, 2012, 127(1):249-255. DOI: 10.1016/j.ygyno.2012.06.032.
[7]
Budanov AV, Sablina AA, Feinstein E, et al. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD[J]. Science, 2004, 304(5670):596-600. DOI: 10.1126/science.1095569.
[8]
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J]. Cell, 2008, 134(3):451-460. DOI: 10.1016/j.cell.2008.06.028.
[9]
Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling[J]. Cell, 2014, 159(1):122-133. DOI: 10.1016/j.cell.2014.08.038.
[10]
Maiuri MC, Malik SA, Morselli E, et al. Stimulation of autophagy by the p53 target gene Sestrin2[J]. Cell Cycle, 2009, 8(10):1571-1576. DOI: 10.4161/cc.8.10.8498.
[11]
Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat[J]. Ann Neurol, 1981, 9(2):131-141. DOI: 10.1002/ana.410090206.
[12]
李丽华,屈艺,刘红卫,等. 足月新生儿缺氧缺血性脑损伤大鼠模型的制作与鉴定[J]. 中国实验动物学报,2009, 17(4):3. DOI: 10.3969/j.issn.1005-4847.2009.04.006.
[13]
Kurien BT, Scofield RH. Western blotting: an introduction[J]. Methods Mol Biol, 2015, 1312:17-30. DOI: 10.1007/978-1-4939-2694-7_5.
[14]
Tamargo-Gómez I, Mariño G. AMPK: regulation of metabolic dynamics in the context of autophagy[J]. Int J Mol Sci, 2018, 19(12):3812. DOI: 10.3390/ijms19123812.
[15]
Villanueva-Paz M, Cotán D, Garrido-Maraver J, et al. AMPK regulation of cell growth, apoptosis, autophagy, and bioenergetics[J]. Exp Suppl, 2016, 107:45-71. DOI: 10.1007/978-3-319-43589-3_3.
[16]
Jiang S, Li T, Ji T, et al. AMPK: potential therapeutic target for ischemic stroke[J]. Theranostics, 2018, 8(16):4535-4551. DOI: 10.7150/thno.25674.
[17]
陈子馨,吴璥,王石麟,等. 神经免疫组织化学的基本技术[J]. 中华病理学杂志,1996, 25(6): 385-386.
[18]
Yang Z, Zhong L, Zhong S, et al. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model[J]. Exp Mol Pathol, 2015, 98(2):219-224. DOI: 10.1016/j.yexmp.2015.02.003.
[19]
Pan R, Timmins GS, Liu W, et al. Autophagy mediates astrocyte death during zinc-potentiated ischemia--reperfusion injury[J]. Biol Trace Elem Res, 2015, 166(1):89-95. DOI: 10.1007/s12011-015-0287-6.
[20]
Ginet V, Pittet MP, Rummel C, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic[J]. Ann Neurol, 2014, 76(5):695-711. DOI: 10.1002/ana.24257.
[21]
Zheng Z, Zhang L, Qu Y, et al. Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway[J]. Stem Cells, 2018, 36(7):1109-1121. DOI: 10.1002/stem.2808.
[22]
Wang J, Qi Q, Feng Z, et al. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway[J]. Oncotarget, 2016, 7(41):66944-66958. DOI: 10.18632/oncotarget.11396.
[23]
Wang B, Cheng KK. Hypothalamic AMPK as a mediator of hormonal regulation of energy balance[J]. Int J Mol Sci, 2018, 19(11). DOI: 10.3390/ijms19113552.
[24]
Chu X, Cao L, Yu Z, et al. Hydrogen-rich saline promotes microglia M2 polarization and complement-mediated synapse loss to restore behavioral deficits following hypoxia-ischemic in neonatal mice via AMPK activation[J]. J Neuroinflammation, 2019, 16(1):104. DOI: 10.1186/s12974-019-1488-2.
[25]
Ma RD, Zhou GJ, Qu M, et al. Corticosterone induces neurotoxicity in PC12 cells via disrupting autophagy flux mediated by AMPK/mTOR signaling[J]. CNS Neurosci Ther, 2019. DOI:10.1111/cns.13212. [Epub ahead of print].
[26]
Zhao H, Chen S, Gao K, et al. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway[J]. Neuroscience, 2017, 348:241-251. DOI: 10.1016/j.neuroscience.2017.02.027.
[27]
Park HW, Park H, Ro SH, et al. Hepatoprotective role of Sestrin2 against chronic ER stress[J]. Nat Commun, 2014, 5:4233. DOI: 10.1038/ncomms5233.
[28]
Kumar A, Shaha C. SESN2 facilitates mitophagy by helping Parkin translocation through ULK1 mediated Beclin1 phosphorylation[J]. Sci Rep, 2018, 8(1):615. DOI: 10.1038/s41598-017-19102-2.
[29]
Ambrosio S, Saccà CD, Amente S, et al. Lysine-specific demethylase LSD1 regulates autophagy in neuroblastoma through SESN2-dependent pathway[J]. Oncogene, 2017, 36(48):6701-6711. DOI: 10.1038/onc.2017.267.
[30]
Li H, Liu S, Yuan H, et al. Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes[J]. Exp Cell Res, 2017, 354(1):18-24. DOI: 10.1016/j.yexcr.2017.03.023.
[31]
Hou YS, Guan JJ, Xu HD, et al. Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation[J]. Mol Cell Biol, 2015, 35(16):2740-2751. DOI: 10.1128/MCB.00285-15.
[32]
Jegal KH, Ko HL, Park SM, et al. Eupatilin induces Sestrin2-dependent autophagy to prevent oxidative stress[J]. Apoptosis, 2016, 21(5):642-656. DOI: 10.1007/s10495-016-1233-6.
[33]
Pasha M, Eid AH, Eid AA, et al. Sestrin2 as a novel biomarker and therapeutic target for various diseases[J]. Oxid Med Cell Longev, 2017, 2017:3296294. DOI: 10.1155/2017/3296294.
[34]
Kim SJ, Kim KM, Yang JH, et al. Sestrin2 protects against acetaminophen-induced liver injury[J]. Chem Biol Interact, 2017, 269:50-58. DOI: 10.1016/j.cbi.2017.02.002.
[35]
Seo K, Seo S, Han JY, et al. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction[J]. Toxicol Appl Pharmacol, 2014, 280(2):314-322. DOI: 10.1016/j.taap.2014.08.011.
[36]
Hwang HJ, Kim JW, Chung HS, et al. Knockdown of Sestrin2 increases lipopolysaccharide-induced oxidative stress, apoptosis, and fibrotic reactions in H9c2 cells and heart tissues of mice via an AMPK-dependent mechanism[J]. Mediators Inflamm, 2018, 2018:6209140. DOI: 10.1155/2018/6209140.
[37]
Hu HJ, Shi ZY, Lin XL, et al. Upregulation of Sestrin2 expression protects against macrophage apoptosis induced by oxidized low-density lipoprotein[J]. DNA Cell Biol, 2015, 34(4):296-302. DOI: 10.1089/dna.2014.2627.
[38]
Chuang YC, Yang JL, Yang DI, et al. Roles of Sestrin2 and ribosomal protein S6 in transient global ischemia-induced hippocampal neuronal injury[J]. Int J Mol Sci, 2015, 16(11):26406-26416. DOI: 10.3390/ijms161125963.
[39]
Xia J, Zeng W, Xia Y, et al. Cold atmospheric plasma induces apoptosis of melanoma cells via Sestrin2-mediated nitric oxide synthase signaling[J]. J Biophotonics, 2019, 12(1):e201800046. DOI: 10.1002/jbio.201800046.
[40]
Ding B, Parmigiani A, Yang C, et al. Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation[J]. Cell Cycle, 2015, 14(20):3231-3241. DOI: 10.1080/15384101.2015.1084447.
[41]
Kim GT, Lee SH, Kim YM. Quercetin regulates Sestrin2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells[J]. J Cancer Prev, 2013, 18(3):264-270. DOI: 10.15430/jcp.2013.18.3.264.
[42]
Morrison A, Chen L, Wang J, et al. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart[J]. FASEB J, 2015, 29(2):408-417. DOI: 10.1096/fj.14-258814.
[43]
Videla LA, Vargas R, Riquelme B, et al. Thyroid hormone-induced expression of the hepatic scaffold proteins Sestrin2, β-Klotho, and FRS2α in relation to FGF21-AMPK signaling[J]. Exp Clin Endocrinol Diabetes, 2018, 126(3):182-186. DOI: 10.1055/s-0043-115533.
[44]
Quan N, Sun W, Wang L, et al. Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism[J]. FASEB J, 2017, 31(9):4153-4167. DOI: 10.1096/fj.201700063R.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[4] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[5] 娜菲沙·沙木西丁, 艾科热木·开赛尔江, 王雅琦, 李万富. 先天性腹壁缺损患儿的发病机制及创新治疗[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 468-475.
[6] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[7] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[8] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[9] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[10] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[11] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[12] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[13] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[14] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[15] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
阅读次数
全文


摘要