[1] |
Nasiell J, Papadogiannakis N, Löf E, et al. Hypoxic ischemic encephalopathy in newborns linked to placental and umbilical cord abnormalities[J]. J Matern Fetal Neonatal Med, 2016, 29(5):721-726. DOI: 10.3109/14767058.2015.1015984.
|
[2] |
Chen H, Qu Y, Tang B, et al. Role of mammalian target of rapamycin in hypoxic or ischemic brain injury: potential neuroprotection and limitations[J]. Rev Neurosci, 2012, 23(3):279-287. DOI: 10.1515/revneuro-2012-0001.
|
[3] |
Puyal J, Ginet V, Grishchuk Y, et al. Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders[J]. Neuroscientist, 2012, 18(3):224-236. DOI: 10.1177/1073858411404948.
|
[4] |
Chen H, Xiong T, Qu Y, et al. mTOR activates hypoxia-inducible factor-1α and inhibits neuronal apoptosis in the developing rat brain during the early phase after hypoxia-ischemia[J]. Neurosci Lett, 2012, 507(2):118-123. DOI: 10.1016/j.neulet.2011.11.058.
|
[5] |
Chang HW, Lee YS, Nam HY, et al. Knockdown of β-catenin controls both apoptotic and autophagic cell death through LKB1/AMPK signaling in head and neck squamous cell carcinoma cell lines[J]. Cell Signal, 2013, 25(4):839-847. DOI: 10.1016/j.cellsig.2012.12.020.
|
[6] |
Xiao X, He Q, Lu C, et al. Metformin impairs the growth of liver kinase B1-intact cervical cancer cells[J]. Gynecol Oncol, 2012, 127(1):249-255. DOI: 10.1016/j.ygyno.2012.06.032.
|
[7] |
Budanov AV, Sablina AA, Feinstein E, et al. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD[J]. Science, 2004, 304(5670):596-600. DOI: 10.1126/science.1095569.
|
[8] |
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J]. Cell, 2008, 134(3):451-460. DOI: 10.1016/j.cell.2008.06.028.
|
[9] |
Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling[J]. Cell, 2014, 159(1):122-133. DOI: 10.1016/j.cell.2014.08.038.
|
[10] |
Maiuri MC, Malik SA, Morselli E, et al. Stimulation of autophagy by the p53 target gene Sestrin2[J]. Cell Cycle, 2009, 8(10):1571-1576. DOI: 10.4161/cc.8.10.8498.
|
[11] |
Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat[J]. Ann Neurol, 1981, 9(2):131-141. DOI: 10.1002/ana.410090206.
|
[12] |
|
[13] |
|
[14] |
Tamargo-Gómez I, Mariño G. AMPK: regulation of metabolic dynamics in the context of autophagy[J]. Int J Mol Sci, 2018, 19(12):3812. DOI: 10.3390/ijms19123812.
|
[15] |
Villanueva-Paz M, Cotán D, Garrido-Maraver J, et al. AMPK regulation of cell growth, apoptosis, autophagy, and bioenergetics[J]. Exp Suppl, 2016, 107:45-71. DOI: 10.1007/978-3-319-43589-3_3.
|
[16] |
Jiang S, Li T, Ji T, et al. AMPK: potential therapeutic target for ischemic stroke[J]. Theranostics, 2018, 8(16):4535-4551. DOI: 10.7150/thno.25674.
|
[17] |
陈子馨,吴璥,王石麟,等. 神经免疫组织化学的基本技术[J]. 中华病理学杂志,1996, 25(6): 385-386.
|
[18] |
Yang Z, Zhong L, Zhong S, et al. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model[J]. Exp Mol Pathol, 2015, 98(2):219-224. DOI: 10.1016/j.yexmp.2015.02.003.
|
[19] |
Pan R, Timmins GS, Liu W, et al. Autophagy mediates astrocyte death during zinc-potentiated ischemia--reperfusion injury[J]. Biol Trace Elem Res, 2015, 166(1):89-95. DOI: 10.1007/s12011-015-0287-6.
|
[20] |
Ginet V, Pittet MP, Rummel C, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic[J]. Ann Neurol, 2014, 76(5):695-711. DOI: 10.1002/ana.24257.
|
[21] |
Zheng Z, Zhang L, Qu Y, et al. Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway[J]. Stem Cells, 2018, 36(7):1109-1121. DOI: 10.1002/stem.2808.
|
[22] |
Wang J, Qi Q, Feng Z, et al. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway[J]. Oncotarget, 2016, 7(41):66944-66958. DOI: 10.18632/oncotarget.11396.
|
[23] |
Wang B, Cheng KK. Hypothalamic AMPK as a mediator of hormonal regulation of energy balance[J]. Int J Mol Sci, 2018, 19(11). DOI: 10.3390/ijms19113552.
|
[24] |
Chu X, Cao L, Yu Z, et al. Hydrogen-rich saline promotes microglia M2 polarization and complement-mediated synapse loss to restore behavioral deficits following hypoxia-ischemic in neonatal mice via AMPK activation[J]. J Neuroinflammation, 2019, 16(1):104. DOI: 10.1186/s12974-019-1488-2.
|
[25] |
Ma RD, Zhou GJ, Qu M, et al. Corticosterone induces neurotoxicity in PC12 cells via disrupting autophagy flux mediated by AMPK/mTOR signaling[J]. CNS Neurosci Ther, 2019. DOI: 10.1111/cns.13212. [Epub ahead of print].
|
[26] |
Zhao H, Chen S, Gao K, et al. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway[J]. Neuroscience, 2017, 348:241-251. DOI: 10.1016/j.neuroscience.2017.02.027.
|
[27] |
Park HW, Park H, Ro SH, et al. Hepatoprotective role of Sestrin2 against chronic ER stress[J]. Nat Commun, 2014, 5:4233. DOI: 10.1038/ncomms5233.
|
[28] |
Kumar A, Shaha C. SESN2 facilitates mitophagy by helping Parkin translocation through ULK1 mediated Beclin1 phosphorylation[J]. Sci Rep, 2018, 8(1):615. DOI: 10.1038/s41598-017-19102-2.
|
[29] |
Ambrosio S, Saccà CD, Amente S, et al. Lysine-specific demethylase LSD1 regulates autophagy in neuroblastoma through SESN2-dependent pathway[J]. Oncogene, 2017, 36(48):6701-6711. DOI: 10.1038/onc.2017.267.
|
[30] |
Li H, Liu S, Yuan H, et al. Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes[J]. Exp Cell Res, 2017, 354(1):18-24. DOI: 10.1016/j.yexcr.2017.03.023.
|
[31] |
Hou YS, Guan JJ, Xu HD, et al. Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation[J]. Mol Cell Biol, 2015, 35(16):2740-2751. DOI: 10.1128/MCB.00285-15.
|
[32] |
Jegal KH, Ko HL, Park SM, et al. Eupatilin induces Sestrin2-dependent autophagy to prevent oxidative stress[J]. Apoptosis, 2016, 21(5):642-656. DOI: 10.1007/s10495-016-1233-6.
|
[33] |
Pasha M, Eid AH, Eid AA, et al. Sestrin2 as a novel biomarker and therapeutic target for various diseases[J]. Oxid Med Cell Longev, 2017, 2017:3296294. DOI: 10.1155/2017/3296294.
|
[34] |
Kim SJ, Kim KM, Yang JH, et al. Sestrin2 protects against acetaminophen-induced liver injury[J]. Chem Biol Interact, 2017, 269:50-58. DOI: 10.1016/j.cbi.2017.02.002.
|
[35] |
Seo K, Seo S, Han JY, et al. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction[J]. Toxicol Appl Pharmacol, 2014, 280(2):314-322. DOI: 10.1016/j.taap.2014.08.011.
|
[36] |
Hwang HJ, Kim JW, Chung HS, et al. Knockdown of Sestrin2 increases lipopolysaccharide-induced oxidative stress, apoptosis, and fibrotic reactions in H9c2 cells and heart tissues of mice via an AMPK-dependent mechanism[J]. Mediators Inflamm, 2018, 2018:6209140. DOI: 10.1155/2018/6209140.
|
[37] |
Hu HJ, Shi ZY, Lin XL, et al. Upregulation of Sestrin2 expression protects against macrophage apoptosis induced by oxidized low-density lipoprotein[J]. DNA Cell Biol, 2015, 34(4):296-302. DOI: 10.1089/dna.2014.2627.
|
[38] |
Chuang YC, Yang JL, Yang DI, et al. Roles of Sestrin2 and ribosomal protein S6 in transient global ischemia-induced hippocampal neuronal injury[J]. Int J Mol Sci, 2015, 16(11):26406-26416. DOI: 10.3390/ijms161125963.
|
[39] |
Xia J, Zeng W, Xia Y, et al. Cold atmospheric plasma induces apoptosis of melanoma cells via Sestrin2-mediated nitric oxide synthase signaling[J]. J Biophotonics, 2019, 12(1):e201800046. DOI: 10.1002/jbio.201800046.
|
[40] |
Ding B, Parmigiani A, Yang C, et al. Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation[J]. Cell Cycle, 2015, 14(20):3231-3241. DOI: 10.1080/15384101.2015.1084447.
|
[41] |
Kim GT, Lee SH, Kim YM. Quercetin regulates Sestrin2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells[J]. J Cancer Prev, 2013, 18(3):264-270. DOI: 10.15430/jcp.2013.18.3.264.
|
[42] |
Morrison A, Chen L, Wang J, et al. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart[J]. FASEB J, 2015, 29(2):408-417. DOI: 10.1096/fj.14-258814.
|
[43] |
Videla LA, Vargas R, Riquelme B, et al. Thyroid hormone-induced expression of the hepatic scaffold proteins Sestrin2, β-Klotho, and FRS2α in relation to FGF21-AMPK signaling[J]. Exp Clin Endocrinol Diabetes, 2018, 126(3):182-186. DOI: 10.1055/s-0043-115533.
|
[44] |
Quan N, Sun W, Wang L, et al. Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism[J]. FASEB J, 2017, 31(9):4153-4167. DOI: 10.1096/fj.201700063R.
|