[1] |
Li B, Concepcion K, Meng X, et al. Brain-immune interactions in perinatal hypoxic-ischemic brain injury [J]. Prog Neurobiol, 2017,159(1): 50-68. DOI: 10.1016/j.pneurobio.2017.10.006.
|
[2] |
Yildiz EP, Ekici B, Tatli B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment [J]. Exp Rev Neurother, 2017, 17(5): 449-459. DOI: 10.1080/14737175.2017.1259567.
|
[3] |
Wassink G, Gunn ER, Drury PP, et al. The mechanisms and treatment of asphyxial encephalopathy [J]. Front Neurosci, 2014, 8(1): 40. DOI: 10.3389/fnins.2014.00040.
|
[4] |
Reinboth BS, Köster C, Abberger H, et al. Endogenous hypothermic response to hypoxia reduces brain injury: implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice [J]. Exp Neurol, 2016, 283(Pt A): 264-275. DOI: 10.1016/j.expneurol.2016.06.024.
|
[5] |
Chen X, Peng W, Zhang Z, et al. Efficacy and safety of selective brain hypothermia therapy on neonatal hypoxic-ischemic encephalopathy [J]. Chin Crit Care Med, 2018, 30(11): 1046-1050. DOI: 10.3760/cma.j.issn.2095-4352.2018.011.007.
|
[6] |
El Omar R, Beroud J, Stoltz JF, et al. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? [J]. Tissue Eng Part B Rev, 2014, 20(5): 523-544. DOI: 10.1089/ten.TEB.2013.0664.
|
[7] |
束庆,范晴晴,刘蕴星,等. 间充质干细胞移植在治疗自身免疫性疾病中的应用进展[J]. 药学进展,2019, 43(4): 276-281.
|
[8] |
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt′s macular dystrophy: follow-up of two open-label phase 1/2 studies [J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/S0140-6736(14)61376-3.
|
[9] |
Hawkins KE, Corcelli M, Dowding K, et al. Embryonic stem cell-derived mesenchymal stem cells (MSC) have a superior neuroprotective capacity over fetal MSC in the hypoxic-ischemic mouse brain [J]. Stem Cells Transl Med, 2018, 7(5): 439-449. DOI: 10.1002/sctm.17-0260.
|
[10] |
Herz J, Koster C, Reinboth BS, et al. Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury [J]. Brain Behav Immun, 2018, 70(1): 118-130. DOI: 10.1016/j.bbi.2018.02.006.
|
[11] |
Ophelders DR, Wolfs TG, Jellema RK, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia [J]. Stem Cells Transl Med, 2016, 5(6): 754-763. DOI: 10.5966/sctm.2015-0197.
|
[12] |
Zhang J, Yang C, Chen J, et al. Umbilical cord mesenchymal stem cells and umbilical cord blood mononuclear cells improve neonatal rat memory after hypoxia-ischemia [J]. Behav Brain Res, 2019, 362(1): 56-63. DOI: 10.1016/j.bbr.2019.01.012.
|
[13] |
Kong D, Zhu J, Liu Q, et al. Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy [J]. Cell Mol Neurobiol, 2017, 37(2): 303-313. DOI: 10.1007/s10571-016-0370-3.
|
[14] |
Li PK, Kandoi S, Misra R, et al. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine [J]. Cytokine Growth Factor Rev, 2019, 46(1): 1-9. DOI: 10.1016/j.cytogfr.2019.04.002.
|
[15] |
Study of hCT-MSC in newborn infants with moderate or severe HIE [EB/OL]. (2018-08-17)[2020-01-11].
URL
|
[16] |
|
[17] |
Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications [J]. Mol Ther, 2015, 23(5): 812-823. DOI: 10.1038/mt.2015.44.
|
[18] |
Ek CJ, D′Angelo B, Baburamani AA, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia [J]. J Cereb Blood Flow Metab, 2015, 35(5): 818-827. DOI: 10.1038/jcbfm.2014.255.
|
[19] |
Gussenhoven R, Klein L, Ophelders D, et al. Annexin A1 as neuroprotective determinant for blood-brain barrier integrity in neonatal hypoxic-ischemic encephalopathy [J]. J Clin Med, 2019, 8(2): 137. DOI: 10.3390/jcm8020137.
|
[20] |
Sisa C, Kholia S, Naylor J, et al. Mesenchymal stromal cell derived extracellular vesicles reduce hypoxia-ischaemia induced perinatal brain injury [J]. Front Physiol, 2019, 10(1): 282. DOI: 10.3389/fphys.2019.00282.
|
[21] |
Ziemka-Nalecz M, Jaworska J, Zalewska T. Insights into the neuroinflammatory responses after neonatal hypoxia-ischemia [J]. J Neuropathol Exp Neurol, 2017, 76(8): 644-654. DOI: 10.1093/jnen/nlx046.
|
[22] |
Zhu LH, Bai X, Zhang N, et al. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage [J]. Brain Res, 2014, 1563(1): 13-21. DOI: 10.1016/j.brainres.2014.03.030.
|
[23] |
Murry PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines [J]. Immunity, 2014, 41(1): 14-20. DOI: 10.1016/j.immuni.2014.06.008.
|
[24] |
Almad A, Maragakis NJ. A stocked toolbox for understanding the role of astrocytes in disease [J]. Nat Rev Neurol, 2018,14(6): 351-362. DOI: 10.1038/s41582-018-0010-2.
|
[25] |
Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases [J]. Biochim Biophys Acta, 2016, 1862(3): 483-491. DOI: 10.1016/j.bbadis.2015.11.014.
|
[26] |
Wang Y, Chen X, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications [J]. Nat Immunol, 2014, 15(11): 1009-1016. DOI: 10.1038/ni.3002.
|
[27] |
Li Z, Ye H, Cai X, et al. Bone marrow-mesenchymal stem cells modulate microglial activation in the peri-infarct area in rats during the acute phase of stroke [J]. Brain Res Bull, 2019, 153(1): 324-333. DOI: 10.1016/j.brainresbull.2019.10.001.
|
[28] |
Mayer AM, Murphy J, MacAdam D, et al. Classical and alternative activation of cyanobacterium oscillatoria sp. lipopolysaccharide-treated rat microglia in vitro[J]. Toxicol Sci, 2016,149(2): 484-495. DOI: 10.1093/toxsci/kfv251.
|
[29] |
Tang Z, Gan Y, Liu Q, et al. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke [J]. J Neuroinflammation, 2014, 11(1): 26. DOI: 10.1186/1742-2094-11-26.
|
[30] |
Sugiyama Y, Sato Y, Kitase Y, et al. Intravenous administration of bone marrow-derived mesenchymal stem cell, but not adipose tissue-derived stem cell, ameliorated the neonatal hypoxic-ischemic brain injury by changing cerebral inflammatory state in rat [J]. Front Neurol, 2018, 9(1): 757. DOI: 10.3389/fneur.2018.00757.
|
[31] |
He M, Shi X, Yang M, et al. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage [J]. Exp Neurol, 2019, 311(1): 15-32. DOI: 10.1016/j.expneurol.2018.09.006.
|
[32] |
Ding H, Zhang H, Ding H, et al. Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response [J]. Cell Mol Immunol, 2017, 14(8): 693-701. DOI: 10.1038/cmi.2015.99.
|
[33] |
Purger D, Gibson EM, Monje M. Myelin plasticity in the central nervous system [J]. Neuropharmacology, 2016, 110(Pt B): 563-573. DOI: 10.1016/j.neuropharm.2015.08.001.
|
[34] |
van Velthoven CT, Kavelaars A, Heijnen CJ. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage [J]. Pediatr Res, 2012, 71(4 Pt 2): 474-481. DOI: 10.1038/pr.2011.64.
|
[35] |
Yang Z, You Y, Levison SW. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum [J]. J Comp Neurol, 2008, 511(1): 19-33. DOI: 10.1002/cne.21819.
|
[36] |
Cameron SH, Alwakeel AJ, Goddard L, et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia [J]. Mol Cell Neurosci, 2015, 68(1): 56-72. DOI: 10.1016/j.mcn.2015.03.019.
|
[37] |
Xu J, Feng Z, Wang X, et al. hUC-MSC exert a neuroprotective effect via anti-apoptotic mechanisms in a neonatal HIE rat model [J]. Cell Transplant, 2019, 28(12): 1552-1559. DOI: 10.1177/0963689719874769.
|
[38] |
Qin X, Cheng J, Zhong Y, et al. Mechanism and treatment related to oxidative stress in neonatal hypoxic-ischemic encephalopathy [J]. Front Mol Neurosci, 2019, 12(1): 88. DOI: 10.3389/fnmol.2019.00088.
|
[39] |
Zhao M, Zhu P, Fujino M, et al. Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies [J]. Int J Mol Sci, 2016, 17(12): 2078. DOI: 10.3390/ijms17122078.
|
[40] |
Ding HF, Zhang H, Ding HF, et al. Therapeutic effect of placenta-derived mesenchymal stem cells on hypoxic-ischemic brain damage in rats [J]. World J Pediatr, 2015, 11(1): 74-82. DOI: 10.1007/s12519-014-0531-8.
|
[41] |
Li X, Michaeloudes C, Zhang Y, et al. Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways [J]. J Allergy Clin Immunol, 2018, 141(5): 1634-1645. DOI: 10.1016/j.jaci.2017.08.017.
|
[42] |
Galipeau J, Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities[J]. Cell Stem Cell, 2018, 22(6): 824-833. DOI: 10.1016/j.stem.2018.05.004.
|
[43] |
Yang C, Chen Y, Zhong LW, et al. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth [J]. Biochem Cell Biol, 2020, 98(3): 415-425. DOI: 10.1139/bcb-2019-0253.
|