切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (04) : 386 -391. doi: 10.3877/cma.j.issn.1673-5250.2020.04.003

所属专题: 文献

专题论坛

间充质干细胞对新生儿缺氧缺血性脑损伤的神经保护作用
袁静1, 杨超2, 陈娟1,()   
  1. 1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
    2. 四川省干细胞库干细胞与再生医学研究中心,成都 610036
  • 收稿日期:2020-03-30 修回日期:2020-07-02 出版日期:2020-08-01
  • 通信作者: 陈娟

Neuroprotective effect of mesenchymal stem cells on neonatal hypoxic-ischemic brain damage

Jing Yuan1, Chao Yang2, Juan Chen1,()   

  1. 1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
    2. Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank, Chengdu 610036, Sichuan Province, China
  • Received:2020-03-30 Revised:2020-07-02 Published:2020-08-01
  • Corresponding author: Juan Chen
  • About author:
    Corresponding author: Chen Juan, Email:
  • Supported by:
    Key Project of Health and Family Planning Commission of Sichuan Province(16ZD019)
引用本文:

袁静, 杨超, 陈娟. 间充质干细胞对新生儿缺氧缺血性脑损伤的神经保护作用[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 386-391.

Jing Yuan, Chao Yang, Juan Chen. Neuroprotective effect of mesenchymal stem cells on neonatal hypoxic-ischemic brain damage[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(04): 386-391.

新生儿缺氧缺血性脑病(HIE)是围生期窒息导致的缺氧缺血性脑损伤(HIBD),是导致新生儿急性死亡和远期神经系统疾病的主要原因。对于HIE迄今尚无根治性治疗措施,临床以对症支持治疗为主,疗效有限,而且不能促进受损神经修复和再生。间充质干细胞移植(MSCT)作为治疗新生儿HIE的新策略,在HIBD动物病理模型研究中,具有明显神经保护作用,其作用机制较为复杂,可能通过分泌细胞外囊泡(ECV)、调节免疫、促进神经元修复与再生、抗细胞凋亡及抗氧化等机制发挥作用,从而达到改善预后的目的。笔者拟就间充质干细胞(MSC)对HIBD动物病理模型的神经保护作用可能机制的最新研究进展进行阐述。

Neonatal hypoxic-ischemic encephalopathy (HIE) is a kind of hypoxic-ischemic brain damage (HIBD) caused by perinatal asphyxia, and it is the main cause of acute neonatal death and long-term neurological diseases. The current strategies for treatment of HIE are symptomatic support therapy, while there is no curative treatment for HIE so far. However, the clinical efficacy of this approach is limited and cannot promote repair or regeneration of damaged nerves. Mesenchymal stem cell transplantation (MSCT), as a new strategy for the treatment of neonatal HIE, has exhibited neuroprotective effects in HIBD model animal. Its mechanism is complex, such as secreting extracellular vesicles, regulating immunity, promoting the repair and regeneration of neurons, anti-apoptosis and anti-oxidation. This article summarizes the latest research progresses on possible mechanisms of mesenchymal stem cell (MSC) in neuroprotective effect on HIBD animal disease model.

[1]
Li B, Concepcion K, Meng X, et al. Brain-immune interactions in perinatal hypoxic-ischemic brain injury [J]. Prog Neurobiol, 2017,159(1): 50-68. DOI:10.1016/j.pneurobio.2017.10.006.
[2]
Yildiz EP, Ekici B, Tatli B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment [J]. Exp Rev Neurother, 2017, 17(5): 449-459. DOI: 10.1080/14737175.2017.1259567.
[3]
Wassink G, Gunn ER, Drury PP, et al. The mechanisms and treatment of asphyxial encephalopathy [J]. Front Neurosci, 2014, 8(1): 40. DOI: 10.3389/fnins.2014.00040.
[4]
Reinboth BS, Köster C, Abberger H, et al. Endogenous hypothermic response to hypoxia reduces brain injury: implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice [J]. Exp Neurol, 2016, 283(Pt A): 264-275. DOI: 10.1016/j.expneurol.2016.06.024.
[5]
Chen X, Peng W, Zhang Z, et al. Efficacy and safety of selective brain hypothermia therapy on neonatal hypoxic-ischemic encephalopathy [J]. Chin Crit Care Med, 2018, 30(11): 1046-1050. DOI: 10.3760/cma.j.issn.2095-4352.2018.011.007.
[6]
El Omar R, Beroud J, Stoltz JF, et al. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? [J]. Tissue Eng Part B Rev, 2014, 20(5): 523-544. DOI: 10.1089/ten.TEB.2013.0664.
[7]
束庆,范晴晴,刘蕴星,等. 间充质干细胞移植在治疗自身免疫性疾病中的应用进展[J]. 药学进展,2019, 43(4): 276-281.
[8]
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt′s macular dystrophy: follow-up of two open-label phase 1/2 studies [J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/S0140-6736(14)61376-3.
[9]
Hawkins KE, Corcelli M, Dowding K, et al. Embryonic stem cell-derived mesenchymal stem cells (MSC) have a superior neuroprotective capacity over fetal MSC in the hypoxic-ischemic mouse brain [J]. Stem Cells Transl Med, 2018, 7(5): 439-449. DOI: 10.1002/sctm.17-0260.
[10]
Herz J, Koster C, Reinboth BS, et al. Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury [J]. Brain Behav Immun, 2018, 70(1): 118-130. DOI: 10.1016/j.bbi.2018.02.006.
[11]
Ophelders DR, Wolfs TG, Jellema RK, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia [J]. Stem Cells Transl Med, 2016, 5(6): 754-763. DOI: 10.5966/sctm.2015-0197.
[12]
Zhang J, Yang C, Chen J, et al. Umbilical cord mesenchymal stem cells and umbilical cord blood mononuclear cells improve neonatal rat memory after hypoxia-ischemia [J]. Behav Brain Res, 2019, 362(1): 56-63. DOI: 10.1016/j.bbr.2019.01.012.
[13]
Kong D, Zhu J, Liu Q, et al. Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy [J]. Cell Mol Neurobiol, 2017, 37(2): 303-313. DOI: 10.1007/s10571-016-0370-3.
[14]
Li PK, Kandoi S, Misra R, et al. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine [J]. Cytokine Growth Factor Rev, 2019, 46(1): 1-9. DOI: 10.1016/j.cytogfr.2019.04.002.
[15]
Study of hCT-MSC in newborn infants with moderate or severe HIE [EB/OL]. (2018-08-17)[2020-01-11].

URL    
[16]
黄庆雷,沈丽,邓钺. 间充质干细胞作用机制的研究进展[J]. 中国科学(生命科学), 2019, 49(2): 108-128. DOI: 10.1360/N052018-00175.
[17]
Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications [J]. Mol Ther, 2015, 23(5): 812-823. DOI: 10.1038/mt.2015.44.
[18]
Ek CJ, D′Angelo B, Baburamani AA, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia [J]. J Cereb Blood Flow Metab, 2015, 35(5): 818-827. DOI: 10.1038/jcbfm.2014.255.
[19]
Gussenhoven R, Klein L, Ophelders D, et al. Annexin A1 as neuroprotective determinant for blood-brain barrier integrity in neonatal hypoxic-ischemic encephalopathy [J]. J Clin Med, 2019, 8(2): 137. DOI: 10.3390/jcm8020137.
[20]
Sisa C, Kholia S, Naylor J, et al. Mesenchymal stromal cell derived extracellular vesicles reduce hypoxia-ischaemia induced perinatal brain injury [J]. Front Physiol, 2019, 10(1): 282. DOI: 10.3389/fphys.2019.00282.
[21]
Ziemka-Nalecz M, Jaworska J, Zalewska T. Insights into the neuroinflammatory responses after neonatal hypoxia-ischemia [J]. J Neuropathol Exp Neurol, 2017, 76(8): 644-654. DOI: 10.1093/jnen/nlx046.
[22]
Zhu LH, Bai X, Zhang N, et al. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage [J]. Brain Res, 2014, 1563(1): 13-21. DOI: 10.1016/j.brainres.2014.03.030.
[23]
Murry PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines [J]. Immunity, 2014, 41(1): 14-20. DOI: 10.1016/j.immuni.2014.06.008.
[24]
Almad A, Maragakis NJ. A stocked toolbox for understanding the role of astrocytes in disease [J]. Nat Rev Neurol, 2018,14(6): 351-362. DOI: 10.1038/s41582-018-0010-2.
[25]
Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases [J]. Biochim Biophys Acta, 2016, 1862(3): 483-491. DOI:10.1016/j.bbadis.2015.11.014.
[26]
Wang Y, Chen X, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications [J]. Nat Immunol, 2014, 15(11): 1009-1016. DOI: 10.1038/ni.3002.
[27]
Li Z, Ye H, Cai X, et al. Bone marrow-mesenchymal stem cells modulate microglial activation in the peri-infarct area in rats during the acute phase of stroke [J]. Brain Res Bull, 2019, 153(1): 324-333. DOI: 10.1016/j.brainresbull.2019.10.001.
[28]
Mayer AM, Murphy J, MacAdam D, et al. Classical and alternative activation of cyanobacterium oscillatoria sp. lipopolysaccharide-treated rat microglia in vitro[J]. Toxicol Sci, 2016,149(2): 484-495. DOI: 10.1093/toxsci/kfv251.
[29]
Tang Z, Gan Y, Liu Q, et al. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke [J]. J Neuroinflammation, 2014, 11(1): 26. DOI: 10.1186/1742-2094-11-26.
[30]
Sugiyama Y, Sato Y, Kitase Y, et al. Intravenous administration of bone marrow-derived mesenchymal stem cell, but not adipose tissue-derived stem cell, ameliorated the neonatal hypoxic-ischemic brain injury by changing cerebral inflammatory state in rat [J]. Front Neurol, 2018, 9(1): 757. DOI: 10.3389/fneur.2018.00757.
[31]
He M, Shi X, Yang M, et al. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage [J]. Exp Neurol, 2019, 311(1): 15-32. DOI: 10.1016/j.expneurol.2018.09.006.
[32]
Ding H, Zhang H, Ding H, et al. Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response [J]. Cell Mol Immunol, 2017, 14(8): 693-701. DOI: 10.1038/cmi.2015.99.
[33]
Purger D, Gibson EM, Monje M. Myelin plasticity in the central nervous system [J]. Neuropharmacology, 2016, 110(Pt B): 563-573. DOI: 10.1016/j.neuropharm.2015.08.001.
[34]
van Velthoven CT, Kavelaars A, Heijnen CJ. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage [J]. Pediatr Res, 2012, 71(4 Pt 2): 474-481. DOI: 10.1038/pr.2011.64.
[35]
Yang Z, You Y, Levison SW. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum [J]. J Comp Neurol, 2008, 511(1): 19-33. DOI: 10.1002/cne.21819.
[36]
Cameron SH, Alwakeel AJ, Goddard L, et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia [J]. Mol Cell Neurosci, 2015, 68(1): 56-72. DOI: 10.1016/j.mcn.2015.03.019.
[37]
Xu J, Feng Z, Wang X, et al. hUC-MSC exert a neuroprotective effect via anti-apoptotic mechanisms in a neonatal HIE rat model [J]. Cell Transplant, 2019, 28(12): 1552-1559. DOI: 10.1177/0963689719874769.
[38]
Qin X, Cheng J, Zhong Y, et al. Mechanism and treatment related to oxidative stress in neonatal hypoxic-ischemic encephalopathy [J]. Front Mol Neurosci, 2019, 12(1): 88. DOI: 10.3389/fnmol.2019.00088.
[39]
Zhao M, Zhu P, Fujino M, et al. Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies [J]. Int J Mol Sci, 2016, 17(12): 2078. DOI: 10.3390/ijms17122078.
[40]
Ding HF, Zhang H, Ding HF, et al. Therapeutic effect of placenta-derived mesenchymal stem cells on hypoxic-ischemic brain damage in rats [J]. World J Pediatr, 2015, 11(1): 74-82. DOI: 10.1007/s12519-014-0531-8.
[41]
Li X, Michaeloudes C, Zhang Y, et al. Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways [J]. J Allergy Clin Immunol, 2018, 141(5): 1634-1645. DOI: 10.1016/j.jaci.2017.08.017.
[42]
Galipeau J, Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities[J]. Cell Stem Cell, 2018, 22(6): 824-833. DOI: 10.1016/j.stem.2018.05.004.
[43]
Yang C, Chen Y, Zhong LW, et al. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth [J]. Biochem Cell Biol, 2020, 98(3): 415-425. DOI: 10.1139/bcb-2019-0253.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[3] 姜博庸, 韩长旭. 间充质干细胞外泌体促进软骨再生的潜在机制研究[J]. 中华关节外科杂志(电子版), 2023, 17(01): 44-51.
[4] 李浩纶, 杨佳麒, 李羽. 盐酸氢吗啡酮在小儿术后镇痛作用中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 166-171.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 许媛媛, 赵悦岐, 李雪, 曲燕. 艾灸在病毒疣中的临床应用及其机制研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(06): 390-394.
[7] 李成功, 郑敏超, 陈志强, 商中华. TCN1在消化道肿瘤中作用机制的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(01): 62-65.
[8] 程必盛, 黄海. 盆腔肿瘤手术后的"隐藏危机":泌尿功能障碍的防范与处理[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 1-5.
[9] 夏雪霞, 张黎雯, 任明星. 疏清颗粒联合阿奇霉素治疗小儿肺炎支原体感染的临床分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 548-550.
[10] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[11] 陈彤, 张帆, 房橙橙, 李全海, 闫宝勇, 张君. 间充质干细胞与巨噬细胞相互作用机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 372-377.
[12] 孟煜凡, 李永政, 樊知遥, 展翰翔. 瘤内微生物在胰腺癌发病和演进中的作用机制及研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 577-582.
[13] 张宇鹏, 邓爱军, 孙艳. 促红细胞生成素治疗间接性外伤性视神经病变的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 45-49.
[14] 孟永生, 雍容, 吉晓丽, 赵钰龙, 赵鹏飞. 右美托咪定复合七氟醚对脑出血继发性损伤的预防效果及神经保护机制分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 44-50.
[15] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
阅读次数
全文


摘要