切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (05) : 540 -549. doi: 10.3877/cma.j.issn.1673-5250.2023.05.007

论著

转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制
张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿()   
  1. 四川大学华西第二医院急诊医学科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2023-07-01 修回日期:2023-09-08 出版日期:2023-10-01
  • 通信作者: 李熙鸿

The protective effect and mechanism of overexpression of transcription factor 12 on the cerebral cortex of rats with sepsis-associated encephalopathy

Xiaoyan Zhang, Dongqiong Xiao, Hu Gao, Lin Chen, Fajuan Tang, Xihong Li()   

  1. Department of Emergency Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2023-07-01 Revised:2023-09-08 Published:2023-10-01
  • Corresponding author: Xihong Li
  • Supported by:
    National Natural Science Foundation of China(82071353); Key R&D Project of Sichuan Provincial Department of Science and Technology(2021YFS0029, 2023YFS0025)
引用本文:

张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.

Xiaoyan Zhang, Dongqiong Xiao, Hu Gao, Lin Chen, Fajuan Tang, Xihong Li. The protective effect and mechanism of overexpression of transcription factor 12 on the cerebral cortex of rats with sepsis-associated encephalopathy[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 540-549.

目的

探讨转录因子12(Tcf12)过表达,对脓毒症相关性脑病(SAE)大鼠大脑皮质的保护作用及其机制。

方法

选择144只30 d龄Sprague Dawley(SD)雄性大鼠为研究对象。按照处理方法,将其分为盲肠结扎穿孔术(CLP)组、Tcf12阴性对照组(Veh+CLP组)和Tcf12过表达组(AD-Tcf12 +CLP组)和假手术组(Sham组) 4组。对Sham组和CLP组大鼠,在其双侧侧脑室各注射5 μL生理盐水;对AD-Tcf12+CLP组大鼠采取硬脑膜微量注射5 μL AD-Tcf12,Veh+CLP组,则硬脑膜微量注射5 μL Veh。侧脑室注射后48 h ,对CLP组、Veh+CLP组和AD-Tcf12+CLP组实施CLP,对Sham组仅开腹后翻看盲肠。在造模后3、6、12、24、48 h监测4组大鼠平均动脉压(MAP)、心率和神经行为学评分;其中24 h时,采取苏木精-伊红(HE)染色,激光共聚焦扫描显微镜观察大鼠大脑皮质病理改变;采用Western blotting检测大鼠大脑皮质蛋白(Tcf12、cleaved caspase-3、Bax、Bcl2、P38、p-P38)表达;免疫荧光染色观察在大鼠大脑皮质神经细胞中Tcf12相对表达水平。本实验获得四川大学华西第二医院动物保护研究委员会批准[批准编号:2020动伦审批第(申022)号],并且按照相应的指南和规则进行动物实验。

结果

①与Sham组比较,CLP组和Veh+CLP组大鼠MAP、神经行为学评分在造模后不同时间点(3、6、12、24、48 h)呈下降趋势,心率呈增高趋势,均于24 h时最显著,并且差异均有统计学意义(P<0.05)。②与Veh+CLP组比较,AD-Tcf12+CLP组MAP、神经行为学评分增高,心率下降,于造模后24 h时最明显,并且差异有统计学意义(P<0.05)。②Western blotting检测结果显示,与Sham组相比,CLP组造模后12、24、48 h时,Tcf12相对表达水平比较,差异均有统计学意义(P=0.045、0.019、0.030),其中24 h时达低谷。③造模后24 h时,免疫荧光染色显示,Tcf12表达主要定位在神经元细胞质中。其中24 h时,CLP组SD大鼠Tcf12相对荧光信号为75.11±6.39,显著低于Sham组的101.79±3.89,并且差异有统计学意义(t=8.73,P<0.001)。④与Sham组比较,CLP组和Veh+CLP组大鼠凋亡相关cleaved caspase-3和Bax相对表达水平,以及p-P38与P38比值(p-P38/P38)明显升高,Bcl2相对表达水平明显降低,差异均有统计学意义(P<0.05)。⑤HE染色显示,与Sham组比较,Veh+CLP组与CLP组大鼠大脑皮质组织病理学改变重度异常,可见细胞核固缩、细胞水肿、细胞数目减少、排列紊乱,而AD-Tcf12+CLP组大鼠皮质病理学改变异常明显好转。

结论

SAE大鼠大脑皮质组织,特别是皮质神经元中Tcf12相对表达水平下调,而Tcf12过表达,对SAE大鼠具有神经保护作用,其病理生理机制可能与抑制大脑皮质神经细胞凋亡有关。

Objective

To investigate protective effects and mechanism of overexpressed transcription factor 12 (Tcf12) on the cortex of rats with sepsis-associated encephalopathy (SAE).

Methods

A total of 144 male Sprague Dawley (SD) rats at 30 days of age were selected into this study. They were randomly divided into four groups according to the processing method: cecal ligation and perforation (CLP) model group (CLP group), Tcf12 negative control group (Veh+ CLP group), Tcf12 overexpression group (AD-Tcf12+ CLP group), and sham surgery group (Sham group). The Sham group and CLP group received 5 μL physiological saline injected into each lateral ventricle. The AD-Tcf12+ CLP group received 5 μL AD-Tcf12, and the Veh+ CLP group received 5 μL Veh. After 48 hours of lateral ventricle injection, CLP surgery was performed. The Sham group only underwent laparotomy and examination of the cecum. The mean arterial pressure (MAP), heart rate, and neurobehavioral scores were monitored at 3, 6, 12, 24, and 48 hours after modeling. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the cerebral cortex of each group at 24 hours after modeling. Western blotting was used to detect the protein expression of Tcf12, cleaved caspase-3, Bax, Bcl2, P38, and p-P38 in the cerebral cortex of rats. Immunofluorescence staining was used to observe the expression of Tcf12 in neurons of the cerebral cortex. This experiment was approved by the Animal Protection Research Committee of West China Second University Hospital, Sichuan University [Approval No. 2020(022)], and animal experiments were carried out in accordance with corresponding guidelines and regulations.

Results

① Compared with Sham group, the MAP and neurobehavioral scores of CLP group and Veh+ CLP group showed a decreasing trend at different time points, while heart rate showed an increasing trend. The most significant changes occurred at 24 hours after modeling, and the differences were statistically significant (P<0.05). In addition, the neurobehavioral scores of CLP group and Veh+ CLP group were less than 6 points at 24 hours, consistent with the diagnosis of SAE. ② Compared with Veh+ CLP group, AD-Tcf12+ CLP group showed increased MAP and neurobehavioral scores and decreased heart rate, with the most significant changes occurring 24 hours after modeling, and the differences were statistically significant (P<0.05). ② Western blotting detection results showed that compared with Sham group, there were statistically significant differences in the relative expression levels of Tcf12 at 12, 24, and 48 h after modeling in CLP group (P=0.045, 0.019, 0.030), reaching a low point at 24 hours. ③ Immunofluorescence staining at 24 h after modeling showed that Tcf12 expression was mainly located in the cytoplasm of neurons. At 24 h after modeling, the fluorescence signal of Tcf12 (75.11±6.39) in CLP group SD rats was significantly lower than that in Sham group (101.79±3.89), and the difference was statistically significant (t=8.73, P<0.001). ④ Compared with Sham group, the expression levels of cleaved caspase-3 and Bax, as well as p-P38/P38, were significantly increased in CLP group and Veh+ CLP group rats, while the expression level of Bcl2 protein was significantly decreased, with statistically significant differences (P<0.05). ⑤ HE staining showed that compared with Sham group, there were significant pathological changes in the cerebral cortex tissue of Veh+ CLP group and CLP group rats, including nuclear condensation, cell edema, decreased cell number, and disordered arrangement. However, the pathological changes in the cerebral cortex tissue of AD-Tcf12+ CLP group rats were significantly improved.

Conclusions

The expression of Tcf12 is downregulated in the cortical tissue of rats with SAE, especially in cortical neurons. Overexpression of Tcf12 could have neuroprotective effects on rats with SAE, and its mechanism might be related to the neuronal apoptosis inhibited in the cerebral cortex.

表1 4组30 d龄雄性SD大鼠不同时间点平均动脉压比较(mmHg,±s)
表2 4组30 d龄雄性SD大鼠不同时间点心率比较(次/min,±s)
表3 4组30 d龄雄性SD大鼠不同时间点神经行为学评分(分,±s)
图1 Western blotting检测Sham组和CLP组SD大鼠不同时间点大脑皮质神经细胞中Tcf12的相对表达水平注:CLP为盲肠结扎穿孔术
表4 Sham组与CLP组SD大鼠不同时间点大脑皮质神经细胞中Tcf12的相对表达水平比较(±s)
图2 Sham组及CLP组SD大鼠造模后24 h时大脑皮质神经细胞中Tcf12表达及定位[图2A~2D分别为CLP组DAPI(蓝色)、Tcf12(绿色)、NeuN(红色)、Merge;图2E~2H分别为Sham组DAPI(蓝色)、Tcf12(绿色)、NeuN(红色)、Merge](免疫荧光染色,高倍)注:CLP为盲肠结肠穿孔术
图3 Western blotting检测4组SD大鼠造模后24 h时大脑皮质神经细胞中cleaved caspase-3、Bax、Bcl2、p-P38和P38相对表达水平
表5 4组30 d龄SD大鼠造模后24 h时cleaved caspase-3、Bax、Bcl2、p-P38/P38相对表达水平比较(±s)
图4 4组30 d龄SD大鼠造模后24 h时大脑皮质病理改变(图4A:CLP组与Veh+CLP组大鼠大脑皮质组织病理改变相似,可见细胞核固缩,细胞水肿,细胞数目减少,排列紊乱、空泡改变;图4B:AD-Tcf12+CLP组大鼠大脑皮质组织病理改变较CLP组与Veh+CLP组明显好转,细胞水肿有所改善,形态结构及排列较规整;图4C:Veh+CLP组;图4D:Sham组大鼠大脑皮质细胞排列有序、结构规整)(HE染色,中倍)注:CLP为盲肠结肠穿孔术
[1]
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 [J]. Crit Care Med, 2021, 49(11): e1063-e1143. DOI: 10.1097/CCM.0000000000005337.
[2]
Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and Meta-analysis [J]. Intensive Care Med, 2020, 46(8):1552-1562. DOI: 10.1007/s00134-020-06151-x.
[3]
Mei B, Li J, Zuo Z. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor [J]. Brain Behav Immun, 2021, 91: 296-314. DOI: 10.1016/j.bbi.2020.10.008.
[4]
Ren C, Yao RQ, Zhang H, et al. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression [J]. J Neuroinflammation, 2020, 17(1): 14. DOI: 10.1186/s12974-020-1701-3.
[5]
Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options [J]. Mil Med Res, 2022, 9(1): 56. DOI: 10.1186/s40779-022-00422-y.
[6]
Yang J, Zhang LI, Jiang ZY, et al. TCF12 promotes the tumorigenesis and metastasis of hepatocellular carcinoma via upregulation of CXCR4 expression [J]. Theranostics, 2019, 9(20): 5810-5827. DOI: 10.7150/thno.34973.
[7]
Gao S, Bian T, Zhang Y, et al. TCF12 overexpression as apoor prognostic factor in ovarian cancer [J]. Pathol Res Pract, 2019, 215(9): 152527. DOI: 10.1016/j.prp.2019.152527.
[8]
Zhang Y, Yu RZ, Li QS, et al. SNHG1/miR-556-5p/TCF12 feedback loop enhances the tumorigenesis of meningioma through Wnt signaling pathway [J]. J Cell Biochem, 2020, 121(2): 1880-1889. DOI: 10.1002/jcb.29423.
[9]
Gu J, Ge X, You A, et al. miR-218-5p inhibits the malignant progression of glioma via targeting TCF12 [J]. Tumori, 2022, 108(4): 338-346. DOI: 10.1177/03008916211018263.
[10]
Rittirsch D, Huber-Lang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Protoc, 2009, 4(1): 31-36. DOI: 10.1038/nprot.2008.214.
[11]
Tang F, Chen L, Gao H, et al. Munc18-1 contributes to hippocampal injury in septic rats through regulation of syntanxin1A and synaptophysin and glutamate levels. Neurochem Res, 2023, 48(3): 791-803. DOI: 10.1007/s11064-022-03806-7.
[12]
Ilker MK, Murat U, Sinan B,et al. Sepsis induces apoptotic cell death in different regions of the brain in a rat model of sepsis [J]. Acta Neurobiol Exp (Wars). 201070(3):246-60. DOI: 10.55782/ane-2010-1796.
[13]
Salomão R, Ferreira BL, Salomo MC, et al. Sepsis: evolving concepts and challenges [J]. Braz J Med Biol Res, 2019, 52(4): e8595. DOI: 10.1590/1414-431X20198595.
[14]
Mazeraud A, Righy C, Bouchereau E, et al. Septic-associated encephalopathy: a comprehensive review [J]. Neurotherapeutics, 2020, 17(2): 392-403. DOI: 10.1007/s13311-020-00862-1.
[15]
Gu M, Mei XL, Zhao YN. Sepsis and cerebral dysfunction: BBB damage, neuroinflammation, oxidative stress, apoptosis and autophagy as key mediators and the potential therapeutic approaches [J]. Neurotox Res, 2021, 39(2): 489-503. DOI: 10.1007/s12640-020-00270-5.
[16]
Gao J, Wang Y, Ma S, et al. Secukinumab alleviates cognitive impairment by attenuating oxidative stress and neuronal apoptosis via the IL-17RA/AKT/ERK1/2 pathway in a rat model of sepsis [J]. Exp Neurol, 2023, 359: 114263. DOI: 10.1016/j.expneurol.2022.114263.
[17]
Catarina AV, Branchini G, Bettoni L, et al. Sepsis-associated encephalopathy: from pathophysiology to progress in experimental studies [J]. Mol Neurobiol, 2021, 58(6): 2770-2779. DOI: 10.1007/s12035-021-02303-2.
[18]
Gao S, Bian T, Su M, et al. miR-26a inhibits ovarian cancer cell proliferation, migration and invasion by targeting TCF12 [J]. Oncol Rep, 2020, 43(1): 368-374. DOI: 10.3892/or.2019.7417.
[19]
Cui T, Liu P, Chen X, et al. Identification and functional characterization of caspases in turbot (scophthalmus maximus) in response to bacterial infection [J]. Fish Shellfish Immunol, 2023, 137: 108757. DOI: 10.1016/j.fsi.2023.108757.
[20]
刘硕儒,王功炜,张斌,等. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J/OL]. 中华腔镜泌尿外科杂志(电子版)202317(4):388-393. DOI:10.3877/cma.j.issn.1674-3253.2023.04.015.
[21]
Zhang Q, Lei X, Wang F, et al. ERK1-mediated immunomodulation of mesenchymal stem cells ameliorates inflammatory disorders [J]. iScience, 2023, 26(10): 107868. DOI: 10.1016/j.isci.2023.107868.
[22]
Moon HR, Yun JM. Neuroprotective effects of hesperetin on H2O2-induced damage in neuroblastoma SH-SY5Y cells [J]. Nutr Res Pract, 2023, 17(5): 899-916. DOI: 10.4162/nrp.2023.17.5.899.
[23]
Kyriakou S, Potamiti L, Demosthenous N, et al. A naturally derived watercress flower-based phenethyl isothiocyanate-enriched extract induces the activation of intrinsic apoptosis via subcellular ultrastructural and Ca2+ efflux alterations in an in vitro model of human malignant melanoma [J]. Nutrients, 2023, 15(18): 4044. DOI: 10.3390/nu15184044.
[24]
Li L, Han Q, Chen Y, et al. β-nicotinamide mononucleotide rescues the quality of aged oocyte and improves subsequent embryo development in pigs [J]. PLoS One, 2023, 18(10): e0291640. DOI: 10.1371/journal.pone.0291640.
[25]
Liao YJ, Lee CY, Twu YC, et al. Isolation and biological evaluation of alfa-mangostin as potential therapeutic agents against liver fibrosis [J]. Bioengineering (Basel), 2023, 10(9): 1075. DOI: 10.3390/bioengineering10091075.
[26]
Zhou RX, Ying J, Qiu X, et al. A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy [J]. Chin Med J (Engl), 2022, 135(12): 1474-1485. DOI: 10.1097/CM9.0000000000002010.
[27]
Zhou RX, Yang X, Li XH, et al. Recombinant CC16 inhibits NLRP3/caspase-1-induced pyroptosis through p38 MAPK and ERK signaling pathways in the brain of a neonatal rat model with sepsis [J]. J Neuroinflammation, 2019, 16(1): 239. DOI: 10.1186/s12974-019-1651-9.
[28]
Zhou RX, Li YY, Qu Y, et al. Regulation of hippocampal neuronal apoptosis and autophagy in mice with sepsis-associated encephalopathy by immunity-related GTPase M1 [J]. CNS Neurosci Ther, 2020, 26(2): 177-188. DOI: 10.1111/cns.13229.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[3] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[4] 魏强, 张明祥, 陈强谱, 孙宝房. 增味小承气汤对梗阻性黄疸大鼠胃肠道动力的影响[J]. 中华普通外科学文献(电子版), 2023, 17(04): 267-270.
[5] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[6] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[7] 张师垚, 徐岩岩, 张琦, 李春强, 赵智成, 刘刚. m6A结合蛋白YTHDC2调节p38MAPK信号通路影响结直肠癌细胞凋亡[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 117-124.
[8] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[9] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[10] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[11] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要