切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (04) : 428 -436. doi: 10.3877/cma.j.issn.1673-5250.2023.04.008

论著

产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响
靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英()   
  1. 电子科技大学附属医院·四川省人民医院,成都 610072
    德阳市人民医院,德阳 618000
  • 收稿日期:2022-12-10 修回日期:2023-05-04 出版日期:2023-08-01
  • 通信作者: 刘文英

Antenatal treatment of tacrolimus on pulmonary vascular remodeling in rat with experimental pathological model of congenital diaphragmatic hernia

Xiya Jin, Xiaosong Huang, Cheng Tan, Qin Jiang, Fang Hou, Yaoyue Li, Bing Xu, Honghui Jia, Wenying Liu()   

  1. Sichuan Provincial People′s Hospital, University of Electronic Science & Technology of China, Chengdu 610072, Sichuan Province, China
    Deyang People′s Hospital, Deyang 618000, Sichuan Province, China
  • Received:2022-12-10 Revised:2023-05-04 Published:2023-08-01
  • Corresponding author: Wenying Liu
  • Supported by:
    Key Research and Development Project of Science & Technology Department of Sichuan Province(2021YFS0381)
引用本文:

靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.

Xiya Jin, Xiaosong Huang, Cheng Tan, Qin Jiang, Fang Hou, Yaoyue Li, Bing Xu, Honghui Jia, Wenying Liu. Antenatal treatment of tacrolimus on pulmonary vascular remodeling in rat with experimental pathological model of congenital diaphragmatic hernia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 428-436.

目的

探讨产前对合并肺发育不良及肺动脉高压(PAH)的先天性膈疝(CDH)大鼠病理模型,采取他克莫司(FK506)治疗的抗血管重构作用及其作用机制。

方法

选取17只健康、成年的无特定病原体(SPF)级Sprague Dawley(SD)大鼠为研究对象,均为8周龄,雌、雄鼠分别为12、5只。采用除草醚构建CDH大鼠病理模型。12只雌鼠受孕后,通过随机数字表法,根据不同处理方式处理分为FK506组(n=3)、CDH组(n=3)、CDH+FK506组(n=3)和对照组(n=3)。观察4组胎鼠肺组织发育情况,采取血管弹性纤维染色(EVG),观察肺血管厚度;α-SMA和CD31免疫荧光双重染色,检测胎鼠新生血管生成;Western blotting法检测胎鼠肺组织中BMPR2、p-SAMD1、p-SMAD5蛋白的表达水平。本动物实验均经电子科技大学附属医院·四川省人民医院动物实验伦理委员会伦理审查通过[伦审(研)2022年第191号]。

结果

①4组胎鼠的双肺重量和双肺重量/胎鼠体重总体比较,差异均有统计学意义(H=81.25、106.98,P均<0.001),而4组胎鼠体重总体比较,差异无统计学意义(P>0.05)。②EVG染色结果显示,4组胎鼠肺动脉中膜厚度百分比(MT%)和肺泡面积百分比(S%)总体比较,差异均有统计学意义(F=13.26、P=0.006,F=37.48、P<0.001)。其中,CDH组胎鼠MT%,较对照组增厚(P=0.001);CDH+FK506组大鼠肺动脉MT%,则较CDH组降低(P=0.002)。③4组CDH胎鼠α-SMA和CD31阳性细胞增殖指数分别总体比较,差异均有统计学意义(F=33.76、9.18,P<0.05)。进一步进行4组间两两多重比较的结果显示,CDH组分别和CDH+FK506组、对照组组间比较,差异均有统计学意义(P<0.05)。④FK506组、CDH+FK506组和对照组3组胎鼠BMPR2、p-SMAD1蛋白相对表达水平总体比较,差异均有统计学意义(F=11.45、10.94,P<0.05),而3组胎鼠p-SMAD5蛋白相对表达水平总体比较,差异无统计学意义(F=0.01、P>0.05)。其中,CDH组胎鼠BMPR2、p-SMAD1表达水平,较对照组降低(P=0.049、0.018),CDH+FK506组BMPR2、p-SMAD1表达水平,则较CDH组升高(P=0.010、0.023)。

结论

在除草醚诱导的CDH大鼠病理模型中,产前对其采取FK506干预,可以减轻CDH大鼠模型的肺血管重构,对缓解CDH大鼠的肺发育不良具有正面影响。

Objective

To explore whether FK506 has anti-vascular remodeling effect and its mechanism on prenatal administration of tacrolimus (FK506) in rats with experimental pathological model of pulmonary arterial hypertension (PAH) associated with congenital diaphragmatic hernia (CDH).

Methods

Seventeen healthy, adult specific pathogen free (SPF)-grade Sprague Dawley (SD) rats were selected in this study, all of which were 8 weeks old, with 12 females and 5 males, respectively. The CDH rat model was made with nitrofen. After a successful pregnancy, they were randomly divided into FK506 group (n=3), CDH group (n=3), CDH+ FK506 group (n=3) and control group (n=3). The development of lung tissue in each group were observed. The vessel wall thickness of the pulmonary arteries was observed by elastic van gieson (EVG) staining, immunofluorescent double staining of α-SMA and CD31 for the detection of neo-vascularization. The expression levels of BMPR2, p-Smad1 and p-Smad5 in fetal rats lungs were determined using Western blotting. The study was performed with the approval of the Ethics Committee of Sichuan Provincial People′s Hospital, University of Electronic Science & Technology of China [Approval No.2022(19)].

Results

①The overall comparison of lung weight and lung weight/body weight of 4 groups showed statistically significant differences (H=81.25, 106.98; both P<0.001), while the overall comparison of body weight of 4 groups showed no statistical significance (P>0.05). EVG staining showed that the percentage of pulmonary artery media thickness (MT%) and alveolar area (S%) in 4 groups were statistically significant differences (F=13.26, P=0.006; F=37.48, P<0.001). Further, EVG staining showed that MT% in CDH group was greater than that in control group (P=0.001), The MT% of pulmonary artery in CDH+ FK506 group was lower than that in CDH group (P=0.002). ③Overall comparison of the proliferation indices of α-SMA and CD31-positive cells among 4 groups, respectively, showed statistically significant differences (F=33.76, 9.180; P<0.05). Further, The differences between CDH group and CDH+ FK506 group and control group were statistically significant (P<0.05). ④Western blotting analysis showed that the overall comparison of relative expression levels of BMPR2 and p-SMAD1 proteins in fetal rats of 3 groups had statistically significant differences (F=11.45, 10.94; P<0.05), while the overall comparison of the relative expression levels of p-SMAD5 protein in fetal rats of 3 groups did not show statistically significant difference (F=0.01, P>0.05). Further, the relative expression levels of BMPR2 and p-Smad1 in CDH group were lower than those in control group (P=0.049, 0.018), and the relative expression levels of BMPR2 and p-Smad1 in CDH+ FK506 group were higher than those in CDH group (P=0.010, 0.023).

Conclusions

Prenatal administration of FK506 can reduce pulmonary vascular remodeling in Nitrofen-induced CDH rat model, it has beneficial effects on alleviating lung hypoplasia in congenital diaphragmatic hernia.

表1 4组胎鼠的双肺重量、胎鼠体重及双肺重量/胎鼠体重总体及组间多重比较
图1 产前给予FK506对CDH胎鼠肺组织结构和血管厚度的影响(图1A~1D分别为对照组、FK506组、CDH组和CDH+FK506组,胎肺组织HE染色,高倍)注:FK506为他克莫司,CDH为先天性膈疝,HE为苏木精-伊红,EVG为血管弹性纤维染色
表2 4组CDH胎鼠左侧肺组织中膜厚度百分比和肺泡面积百分比总体及组间多重比较(±s)
图2 对照组、CDH组和CDH+FK506组EVG染色图(图2A~2C:对照组、CDH组和CDH+FK506组,EVG染色,高倍)注:FK506为他克莫司,CDH为先天性膈疝,HE为苏木精-伊红,EVG为血管弹性纤维染色
表3 4组CDH胎鼠肺动脉中膜平滑肌层标志物α-SMA和CD31阳性细胞增殖指数总体及组间多重比较(±s)
图3 α-SMA和CD31免疫荧光染色图像[图3A~3D:对照组、FK506组、CDH组和CDH+FK506组α-SMA免疫荧光染色(绿色);图3E~3H:对照组、FK506组、CDH组和CDH+FK506组CD31免疫荧光染色(红色)]注:α-SMA为α平滑肌肌动蛋白,CDH为先天性膈疝,FK506为他克莫司
表4 3组胎鼠BMPR2、p-SMAD1、p-SMAD5蛋白相对表达水平总体及组间多重比较(±s)
图4 Western blotting检测对照组、CDH组和CDH+FK506组胎鼠肺组织中BMPR2、p-SMAD1、p-SMAD5蛋白电泳图注:CDH为先天性膈疝,FK506为他克莫司
[1]
Zani A, Chung WK, Deprest J, et al. Congenital diaphragmatic hernia [J]. Nat Rev Dis Primers, 2022, 8(1): 37. DOI: 10.1038/s41572-022-00362-w.
[2]
Paoletti M, Raffler G, Gaffi MS, et al. Prevalence and risk factors for congenital diaphragmatic hernia: a global view [J]. J Pediatr Surg, 2020, 55(11): 2297-2307. DOI: 10.1016/j.jpedsurg.2020.06.022.
[3]
Politis MD, Bermejo-Sánchez E, Canfield MA, et al. Prevalence and mortality in children with congenital diaphragmatic hernia: a multicountry study [J]. Ann Epidemiol, 2021, 56: 61-69.e3. DOI: 10.1016/j.annepidem.2020.11.007.
[4]
Burgos CM, Modée A, Öst E, et al. Addressing the causes of late mortality in infants with congenital diaphragmatic hernia [J]. J Pediatr Surg, 2017, 52(4): 526-529. DOI: 10.1016/j.jpedsurg.2016.08.028.
[5]
Pendraszewska M, Krucińska B, Pazik J, et al. A long-term evaluation of treatment results of pregnant patients following a liver transplant [J]. Transplant Proc, 2020, 52(8):2512-2516. DOI: 10.1016/j.transproceed.2020.03.034.
[6]
Spiekerkoetter E, Tian X, Cai J, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension [J]. J Clin Invest, 2013, 123(8): 3600-3613. DOI: 10.1172/JCI65592.
[7]
Donners MM, Bot I, De Windt LJ, et al. Low-dose FK506 blocks collar-induced atherosclerotic plaque development and stabilizes plaques in ApoE-/- mice[J]. Am J Transplant, 2005, 5(6):1204-1215. DOI: 10.1111/j.1600-6143.2005.00821.x.
[8]
Alastalo TP, Li M, Perez Vde J, et al. Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival[J]. J Clin Invest, 2011, 121(9):3735-3746. DOI: 10.1172/JCI43382.
[9]
Spiekerkoetter E, Sung YK, Sudheendra D, et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension [J]. Eur Respir J, 2017, 50(3): 1602449. DOI: 10.1183/13993003.02449-2016.
[10]
Spiekerkoetter E, Sung YK, Sudheendra D, et al. Low-dose FK506 (Tacrolimus) in end-stage pulmonary arterial hypertension [J]. Am J Respir Crit Care Med, 2015, 192(2): 254-257. DOI: 10.1164/rccm.201411-2061LE.
[11]
Wang Z, Shi B, Jin H, et al. Low-dose of tacrolimus favors the induction of functional CD4+CD25+FoxP3+ regulatory T cells in solid-organ transplantation [J]. Int Immunopharmacol, 2009, 9(5): 564-569. DOI: 10.1016/j.intimp.2009.01.029.
[12]
Tamosiuniene R, Tian W, Dhillon G, et al. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension [J]. Circ Res, 2011, 109(8): 867-879. DOI: 10.1161/CIRCRESAHA.110.236927.
[13]
Chatterjee D, Ing RJ, Gien J. Update on congenital diaphragmatic hernia[J]. Anesth Analg, 2020, 131(3): 808-821. DOI: 10.1213/ANE.0000000000004324.
[14]
Deng Z, Morse JH, Slager SL, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-Ⅱgene [J]. Am J Hum Genet, 2000, 67(3): 737-744. DOI: 10.1086/303059.
[15]
Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-Ⅱ,a receptor member of the TGF-beta family [J]. J Med Genet, 2000, 37(10):741-745. DOI: 10.1136/jmg.37.10.741.
[16]
Atkinson C, Stewart S, Upton PD, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of typeⅡbone morphogenetic protein receptor [J]. Circulation, 2002, 105(14): 1672-1678. DOI: 10.1161/01.cir.0000012754.72951.3d.
[17]
Jain AB, Reyes J, Marcos A, et al. Pregnancy after liver transplantation with tacrolimus immunosuppression: a single center′s experience update at 13 years [J]. Transplantation, 2003, 76(5): 827-832. DOI: 10.1097/01.TP.0000084823.89528.89.
[18]
Aktürk S, Çelebi ZK, Erdoǧmuş Ş, et al. Pregnancy after kidney transplantation: outcomes, tacrolimus doses, and trough levels [J]. Transplant Proc, 2015, 47(5): 1442-1444. DOI: 10.1016/j.transproceed.2015.04.041.
[19]
Gosemann JH, Friedmacher F, Fujiwara N, et al. Disruption of the bone morphogenetic protein receptor 2 pathway in nitrofen-induced congenital diaphragmatic hernia [J]. Birth Defects Res B Dev Reprod Toxicol, 2013, 98(4): 304-309. DOI: 10.1002/bdrb.21065.
[20]
Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development [J]. Dev Cell, 2010, 18(1): 8-23. DOI: 10.1016/j.devcel.2009.12.010.
[21]
Greer JJ, Allan DW, Martin-Caraballo M, et al. An overview of phrenic nerve and diaphragm muscle development in the perinatal rat [J]. J Appl Physiol (1985), 1999, 86(3): 779-786. DOI: 10.1152/jappl.1999.86.3.779.
[22]
French AE, Soldin SJ, Soldin OP, et al. Milk transfer and neonatal safety of tacrolimus [J]. Ann Pharmacother, 2003, 37(6): 815-818. DOI: 10.1345/aph.1C312.
[23]
Atkinson C, Stewart S, Upton PD, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type Ⅱ bone morphogenetic protein receptor [J]. Circulation, 2002, 105(14): 1672-1678. DOI: 10.1161/01.cir.0000012754.72951.3d.
[24]
Southwood M, Jeffery TK, Yang X, et al. Regulation of bone morphogenetic protein signalling in human pulmonary vascular development [J]. J Pathol, 2008, 214(1): 85-95. DOI: 10.1002/path.2261.
[25]
Han C, Hong KH, Kim YH, et al. SMAD1 deficiency in either endothelial or smooth muscle cells can predispose mice to pulmonary hypertension [J]. Hypertension, 2013, 61(5): 1044-1052. DOI: 10.1161/HYPERTENSIONAHA.111.199158.
[26]
Yang X, Castilla LH, Xu X, et al. Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5 [J]. Development, 1999, 126(8): 1571-1580. DOI: 10.1242/dev.126.8.1571.
[27]
Makanga M, Dewachter C, Maruyama H, et al. Downregulated bone morphogenetic protein signaling in nitrofen-induced congenital diaphragmatic hernia [J]. Pediatr Surg Int, 2013, 29(8): 823-834. DOI: 10.1007/s00383-013-3340-6.
[28]
Pierro M, Thébaud B. Understanding and treating pulmonary hypertension in congenital diaphragmatic hernia [J]. Semin Fetal Neonatal Med, 2014, 19(6): 357-363. DOI: 10.1016/j.siny.201.
[1] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[2] 曹迪, 张玉茹. 经腹腔镜生物补片修补直肠癌根治术后盆底疝1例[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 115-116.
[3] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[4] 吴畏, 吴永哲, 李宗倍, 崔宏力, 李华志, 许臣. 轻质大网孔补片腹腔镜下疝修补术治疗老年腹股沟疝的疗效及炎症因子的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 70-73.
[5] 刘跃刚, 薛振峰. 腹腔镜腹股沟疝日间手术在老年患者中的安全性分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 711-714.
[6] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[7] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[8] 于智慧, 赵建军. 后路腰方肌阻滞复合全身麻醉在腹股沟斜疝经腹腹膜前手术中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 734-739.
[9] 田静, 方秀春. 超声引导下横筋膜平面阻滞在儿童腹股沟疝手术的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 740-744.
[10] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[11] 李雪, 刘文婷, 窦丽婷, 刘叶红. 联合护理在腹腔镜食管裂孔疝修补中的应用效果分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 750-754.
[12] 王红艳, 马艳丽, 郑洁灿. 手术室综合护理在腹股沟疝手术中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 755-758.
[13] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[14] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[15] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
阅读次数
全文


摘要