切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (04) : 428 -436. doi: 10.3877/cma.j.issn.1673-5250.2023.04.008

论著

产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响
靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英()   
  1. 电子科技大学附属医院·四川省人民医院,成都 610072
    德阳市人民医院,德阳 618000
  • 收稿日期:2022-12-10 修回日期:2023-05-04 出版日期:2023-08-01
  • 通信作者: 刘文英

Antenatal treatment of tacrolimus on pulmonary vascular remodeling in rat with experimental pathological model of congenital diaphragmatic hernia

Xiya Jin, Xiaosong Huang, Cheng Tan, Qin Jiang, Fang Hou, Yaoyue Li, Bing Xu, Honghui Jia, Wenying Liu()   

  1. Sichuan Provincial People′s Hospital, University of Electronic Science & Technology of China, Chengdu 610072, Sichuan Province, China
    Deyang People′s Hospital, Deyang 618000, Sichuan Province, China
  • Received:2022-12-10 Revised:2023-05-04 Published:2023-08-01
  • Corresponding author: Wenying Liu
  • Supported by:
    Key Research and Development Project of Science & Technology Department of Sichuan Province(2021YFS0381)
引用本文:

靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.

Xiya Jin, Xiaosong Huang, Cheng Tan, Qin Jiang, Fang Hou, Yaoyue Li, Bing Xu, Honghui Jia, Wenying Liu. Antenatal treatment of tacrolimus on pulmonary vascular remodeling in rat with experimental pathological model of congenital diaphragmatic hernia[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 428-436.

目的

探讨产前对合并肺发育不良及肺动脉高压(PAH)的先天性膈疝(CDH)大鼠病理模型,采取他克莫司(FK506)治疗的抗血管重构作用及其作用机制。

方法

选取17只健康、成年的无特定病原体(SPF)级Sprague Dawley(SD)大鼠为研究对象,均为8周龄,雌、雄鼠分别为12、5只。采用除草醚构建CDH大鼠病理模型。12只雌鼠受孕后,通过随机数字表法,根据不同处理方式处理分为FK506组(n=3)、CDH组(n=3)、CDH+FK506组(n=3)和对照组(n=3)。观察4组胎鼠肺组织发育情况,采取血管弹性纤维染色(EVG),观察肺血管厚度;α-SMA和CD31免疫荧光双重染色,检测胎鼠新生血管生成;Western blotting法检测胎鼠肺组织中BMPR2、p-SAMD1、p-SMAD5蛋白的表达水平。本动物实验均经电子科技大学附属医院·四川省人民医院动物实验伦理委员会伦理审查通过[伦审(研)2022年第191号]。

结果

①4组胎鼠的双肺重量和双肺重量/胎鼠体重总体比较,差异均有统计学意义(H=81.25、106.98,P均<0.001),而4组胎鼠体重总体比较,差异无统计学意义(P>0.05)。②EVG染色结果显示,4组胎鼠肺动脉中膜厚度百分比(MT%)和肺泡面积百分比(S%)总体比较,差异均有统计学意义(F=13.26、P=0.006,F=37.48、P<0.001)。其中,CDH组胎鼠MT%,较对照组增厚(P=0.001);CDH+FK506组大鼠肺动脉MT%,则较CDH组降低(P=0.002)。③4组CDH胎鼠α-SMA和CD31阳性细胞增殖指数分别总体比较,差异均有统计学意义(F=33.76、9.18,P<0.05)。进一步进行4组间两两多重比较的结果显示,CDH组分别和CDH+FK506组、对照组组间比较,差异均有统计学意义(P<0.05)。④FK506组、CDH+FK506组和对照组3组胎鼠BMPR2、p-SMAD1蛋白相对表达水平总体比较,差异均有统计学意义(F=11.45、10.94,P<0.05),而3组胎鼠p-SMAD5蛋白相对表达水平总体比较,差异无统计学意义(F=0.01、P>0.05)。其中,CDH组胎鼠BMPR2、p-SMAD1表达水平,较对照组降低(P=0.049、0.018),CDH+FK506组BMPR2、p-SMAD1表达水平,则较CDH组升高(P=0.010、0.023)。

结论

在除草醚诱导的CDH大鼠病理模型中,产前对其采取FK506干预,可以减轻CDH大鼠模型的肺血管重构,对缓解CDH大鼠的肺发育不良具有正面影响。

Objective

To explore whether FK506 has anti-vascular remodeling effect and its mechanism on prenatal administration of tacrolimus (FK506) in rats with experimental pathological model of pulmonary arterial hypertension (PAH) associated with congenital diaphragmatic hernia (CDH).

Methods

Seventeen healthy, adult specific pathogen free (SPF)-grade Sprague Dawley (SD) rats were selected in this study, all of which were 8 weeks old, with 12 females and 5 males, respectively. The CDH rat model was made with nitrofen. After a successful pregnancy, they were randomly divided into FK506 group (n=3), CDH group (n=3), CDH+ FK506 group (n=3) and control group (n=3). The development of lung tissue in each group were observed. The vessel wall thickness of the pulmonary arteries was observed by elastic van gieson (EVG) staining, immunofluorescent double staining of α-SMA and CD31 for the detection of neo-vascularization. The expression levels of BMPR2, p-Smad1 and p-Smad5 in fetal rats lungs were determined using Western blotting. The study was performed with the approval of the Ethics Committee of Sichuan Provincial People′s Hospital, University of Electronic Science & Technology of China [Approval No.2022(19)].

Results

①The overall comparison of lung weight and lung weight/body weight of 4 groups showed statistically significant differences (H=81.25, 106.98; both P<0.001), while the overall comparison of body weight of 4 groups showed no statistical significance (P>0.05). EVG staining showed that the percentage of pulmonary artery media thickness (MT%) and alveolar area (S%) in 4 groups were statistically significant differences (F=13.26, P=0.006; F=37.48, P<0.001). Further, EVG staining showed that MT% in CDH group was greater than that in control group (P=0.001), The MT% of pulmonary artery in CDH+ FK506 group was lower than that in CDH group (P=0.002). ③Overall comparison of the proliferation indices of α-SMA and CD31-positive cells among 4 groups, respectively, showed statistically significant differences (F=33.76, 9.180; P<0.05). Further, The differences between CDH group and CDH+ FK506 group and control group were statistically significant (P<0.05). ④Western blotting analysis showed that the overall comparison of relative expression levels of BMPR2 and p-SMAD1 proteins in fetal rats of 3 groups had statistically significant differences (F=11.45, 10.94; P<0.05), while the overall comparison of the relative expression levels of p-SMAD5 protein in fetal rats of 3 groups did not show statistically significant difference (F=0.01, P>0.05). Further, the relative expression levels of BMPR2 and p-Smad1 in CDH group were lower than those in control group (P=0.049, 0.018), and the relative expression levels of BMPR2 and p-Smad1 in CDH+ FK506 group were higher than those in CDH group (P=0.010, 0.023).

Conclusions

Prenatal administration of FK506 can reduce pulmonary vascular remodeling in Nitrofen-induced CDH rat model, it has beneficial effects on alleviating lung hypoplasia in congenital diaphragmatic hernia.

表1 4组胎鼠的双肺重量、胎鼠体重及双肺重量/胎鼠体重总体及组间多重比较
图1 产前给予FK506对CDH胎鼠肺组织结构和血管厚度的影响(图1A~1D分别为对照组、FK506组、CDH组和CDH+FK506组,胎肺组织HE染色,高倍)注:FK506为他克莫司,CDH为先天性膈疝,HE为苏木精-伊红,EVG为血管弹性纤维染色
表2 4组CDH胎鼠左侧肺组织中膜厚度百分比和肺泡面积百分比总体及组间多重比较(±s)
图2 对照组、CDH组和CDH+FK506组EVG染色图(图2A~2C:对照组、CDH组和CDH+FK506组,EVG染色,高倍)注:FK506为他克莫司,CDH为先天性膈疝,HE为苏木精-伊红,EVG为血管弹性纤维染色
表3 4组CDH胎鼠肺动脉中膜平滑肌层标志物α-SMA和CD31阳性细胞增殖指数总体及组间多重比较(±s)
图3 α-SMA和CD31免疫荧光染色图像[图3A~3D:对照组、FK506组、CDH组和CDH+FK506组α-SMA免疫荧光染色(绿色);图3E~3H:对照组、FK506组、CDH组和CDH+FK506组CD31免疫荧光染色(红色)]注:α-SMA为α平滑肌肌动蛋白,CDH为先天性膈疝,FK506为他克莫司
表4 3组胎鼠BMPR2、p-SMAD1、p-SMAD5蛋白相对表达水平总体及组间多重比较(±s)
图4 Western blotting检测对照组、CDH组和CDH+FK506组胎鼠肺组织中BMPR2、p-SMAD1、p-SMAD5蛋白电泳图注:CDH为先天性膈疝,FK506为他克莫司
[1]
Zani A, Chung WK, Deprest J, et al. Congenital diaphragmatic hernia [J]. Nat Rev Dis Primers, 2022, 8(1): 37. DOI: 10.1038/s41572-022-00362-w.
[2]
Paoletti M, Raffler G, Gaffi MS, et al. Prevalence and risk factors for congenital diaphragmatic hernia: a global view [J]. J Pediatr Surg, 2020, 55(11): 2297-2307. DOI: 10.1016/j.jpedsurg.2020.06.022.
[3]
Politis MD, Bermejo-Sánchez E, Canfield MA, et al. Prevalence and mortality in children with congenital diaphragmatic hernia: a multicountry study [J]. Ann Epidemiol, 2021, 56: 61-69.e3. DOI: 10.1016/j.annepidem.2020.11.007.
[4]
Burgos CM, Modée A, Öst E, et al. Addressing the causes of late mortality in infants with congenital diaphragmatic hernia [J]. J Pediatr Surg, 2017, 52(4): 526-529. DOI: 10.1016/j.jpedsurg.2016.08.028.
[5]
Pendraszewska M, Krucińska B, Pazik J, et al. A long-term evaluation of treatment results of pregnant patients following a liver transplant [J]. Transplant Proc, 2020, 52(8):2512-2516. DOI: 10.1016/j.transproceed.2020.03.034.
[6]
Spiekerkoetter E, Tian X, Cai J, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension [J]. J Clin Invest, 2013, 123(8): 3600-3613. DOI: 10.1172/JCI65592.
[7]
Donners MM, Bot I, De Windt LJ, et al. Low-dose FK506 blocks collar-induced atherosclerotic plaque development and stabilizes plaques in ApoE-/- mice[J]. Am J Transplant, 2005, 5(6):1204-1215. DOI: 10.1111/j.1600-6143.2005.00821.x.
[8]
Alastalo TP, Li M, Perez Vde J, et al. Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival[J]. J Clin Invest, 2011, 121(9):3735-3746. DOI: 10.1172/JCI43382.
[9]
Spiekerkoetter E, Sung YK, Sudheendra D, et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension [J]. Eur Respir J, 2017, 50(3): 1602449. DOI: 10.1183/13993003.02449-2016.
[10]
Spiekerkoetter E, Sung YK, Sudheendra D, et al. Low-dose FK506 (Tacrolimus) in end-stage pulmonary arterial hypertension [J]. Am J Respir Crit Care Med, 2015, 192(2): 254-257. DOI: 10.1164/rccm.201411-2061LE.
[11]
Wang Z, Shi B, Jin H, et al. Low-dose of tacrolimus favors the induction of functional CD4+CD25+FoxP3+ regulatory T cells in solid-organ transplantation [J]. Int Immunopharmacol, 2009, 9(5): 564-569. DOI: 10.1016/j.intimp.2009.01.029.
[12]
Tamosiuniene R, Tian W, Dhillon G, et al. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension [J]. Circ Res, 2011, 109(8): 867-879. DOI: 10.1161/CIRCRESAHA.110.236927.
[13]
Chatterjee D, Ing RJ, Gien J. Update on congenital diaphragmatic hernia[J]. Anesth Analg, 2020, 131(3): 808-821. DOI: 10.1213/ANE.0000000000004324.
[14]
Deng Z, Morse JH, Slager SL, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-Ⅱgene [J]. Am J Hum Genet, 2000, 67(3): 737-744. DOI: 10.1086/303059.
[15]
Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-Ⅱ,a receptor member of the TGF-beta family [J]. J Med Genet, 2000, 37(10):741-745. DOI: 10.1136/jmg.37.10.741.
[16]
Atkinson C, Stewart S, Upton PD, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of typeⅡbone morphogenetic protein receptor [J]. Circulation, 2002, 105(14): 1672-1678. DOI: 10.1161/01.cir.0000012754.72951.3d.
[17]
Jain AB, Reyes J, Marcos A, et al. Pregnancy after liver transplantation with tacrolimus immunosuppression: a single center′s experience update at 13 years [J]. Transplantation, 2003, 76(5): 827-832. DOI: 10.1097/01.TP.0000084823.89528.89.
[18]
Aktürk S, Çelebi ZK, Erdoǧmuş Ş, et al. Pregnancy after kidney transplantation: outcomes, tacrolimus doses, and trough levels [J]. Transplant Proc, 2015, 47(5): 1442-1444. DOI: 10.1016/j.transproceed.2015.04.041.
[19]
Gosemann JH, Friedmacher F, Fujiwara N, et al. Disruption of the bone morphogenetic protein receptor 2 pathway in nitrofen-induced congenital diaphragmatic hernia [J]. Birth Defects Res B Dev Reprod Toxicol, 2013, 98(4): 304-309. DOI: 10.1002/bdrb.21065.
[20]
Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development [J]. Dev Cell, 2010, 18(1): 8-23. DOI: 10.1016/j.devcel.2009.12.010.
[21]
Greer JJ, Allan DW, Martin-Caraballo M, et al. An overview of phrenic nerve and diaphragm muscle development in the perinatal rat [J]. J Appl Physiol (1985), 1999, 86(3): 779-786. DOI: 10.1152/jappl.1999.86.3.779.
[22]
French AE, Soldin SJ, Soldin OP, et al. Milk transfer and neonatal safety of tacrolimus [J]. Ann Pharmacother, 2003, 37(6): 815-818. DOI: 10.1345/aph.1C312.
[23]
Atkinson C, Stewart S, Upton PD, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type Ⅱ bone morphogenetic protein receptor [J]. Circulation, 2002, 105(14): 1672-1678. DOI: 10.1161/01.cir.0000012754.72951.3d.
[24]
Southwood M, Jeffery TK, Yang X, et al. Regulation of bone morphogenetic protein signalling in human pulmonary vascular development [J]. J Pathol, 2008, 214(1): 85-95. DOI: 10.1002/path.2261.
[25]
Han C, Hong KH, Kim YH, et al. SMAD1 deficiency in either endothelial or smooth muscle cells can predispose mice to pulmonary hypertension [J]. Hypertension, 2013, 61(5): 1044-1052. DOI: 10.1161/HYPERTENSIONAHA.111.199158.
[26]
Yang X, Castilla LH, Xu X, et al. Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5 [J]. Development, 1999, 126(8): 1571-1580. DOI: 10.1242/dev.126.8.1571.
[27]
Makanga M, Dewachter C, Maruyama H, et al. Downregulated bone morphogenetic protein signaling in nitrofen-induced congenital diaphragmatic hernia [J]. Pediatr Surg Int, 2013, 29(8): 823-834. DOI: 10.1007/s00383-013-3340-6.
[28]
Pierro M, Thébaud B. Understanding and treating pulmonary hypertension in congenital diaphragmatic hernia [J]. Semin Fetal Neonatal Med, 2014, 19(6): 357-363. DOI: 10.1016/j.siny.201.
[1] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[2] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[3] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[4] 张商迪, 赵博文, 潘美, 彭晓慧, 陈冉, 毛彦恺, 陈阳, 袁华, 陈燕. 中晚孕期胎儿心房内径定量评估心房比例失调胎儿心脏畸形的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 785-793.
[5] 周涵, 武胡雯, 张培深, 邓晗彬, 范闻轩, 李嘉诚, 程少文. 蛋白质组学在慢性难愈合创面研究中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 536-540.
[6] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[7] 嵇振岭, 陈杰, 唐健雄. 重视复杂腹壁疝手术并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 601-606.
[8] 江志鹏, 钟克力, 陈双. 复杂腹壁疝手术后腹腔高压与腹腔间室综合征的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 612-615.
[9] 王学虎, 赵渝. 复杂腹壁疝手术中血管损伤并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 616-619.
[10] 曹能琦, 张恒, 郑立锋, 陶庆松, 嵇振岭. Ad-Hoc 自裁剪补片用于造口旁疝Sugarbaker 修补术[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 620-623.
[11] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[12] 马东扬, 李斌, 陆安清, 王光华, 雷文章, 宋应寒. Gilbert 与单层补片腹膜前疝修补术疗效的随机对照研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 629-633.
[13] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[14] 王浩源, 汪海洋, 孙建明, 陈以宽, 祁小桐, 唐博. 腹腔镜与开放修补对肝硬化腹外疝患者肝功能及凝血的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 654-659.
[15] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?