切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (04) : 437 -445. doi: 10.3877/cma.j.issn.1673-5250.2023.04.009

论著

染色体微阵列分析技术在股骨长度偏短胎儿遗传学诊断中的应用
刘磊, 王优, 黄锐斌, 张丽娜, 宋一丹, 雷婷缨()   
  1. 广州市妇女儿童医疗中心,广州 510000
  • 收稿日期:2023-01-08 修回日期:2023-05-09 出版日期:2023-08-01
  • 通信作者: 雷婷缨

Application of chromosome microarray analysis on short femur length in fetuses

Lei Liu, You Wang, Ruibin Huang, Lina Zhang, Yidan Song, Tingying Lei()   

  1. Guangzhou Women and Children′s Medical Center, Guangzhou 510000, Guangdong Province, China
  • Received:2023-01-08 Revised:2023-05-09 Published:2023-08-01
  • Corresponding author: Tingying Lei
引用本文:

刘磊, 王优, 黄锐斌, 张丽娜, 宋一丹, 雷婷缨. 染色体微阵列分析技术在股骨长度偏短胎儿遗传学诊断中的应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 437-445.

Lei Liu, You Wang, Ruibin Huang, Lina Zhang, Yidan Song, Tingying Lei. Application of chromosome microarray analysis on short femur length in fetuses[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 437-445.

目的

探讨染色体微阵列分析(CMA)技术在全基因组水平探讨股骨长度(FL)偏短胎儿的遗传学病因。

方法

选取2019年1月至2020年12月于广州市妇女儿童医疗中心经产前胎儿超声检查提示胎儿FL偏短,并接受侵入性产前诊断的73例孕妇及其胎儿为研究对象。根据是否合并其他明显结构异常,将其分为孤立组(n=56,单纯FL或四肢长骨短于同胎龄儿,较正常值<-2 s,伴或不伴超声软指标阳性者)和复杂组[n=17,合并骨骼系统其他畸形和(或)其他系统结构畸形者]。对这73例胎儿进行染色体核型分析和CMA检测,并应用染色体分析套件(ChAS)及相关的生物信息学方法对结果进行分析。本研究遵循的程序符合广州市妇女儿童医疗中心人体试验委员会所制定的伦理学标准,得到该伦理委员会批准(审批文号:穗妇儿科伦通字〔2019〕第11600号)。所有孕妇在接受侵入性产前诊断前及接受遗传咨询时,均签署知情同意书,并告知产前诊断风险、检测优势及局限性。

结果

①孤立组56例胎儿中,6例合并超声软指标异常;复杂组17例胎儿中,6例合并神经系统畸形,6例合并心血管畸形,6例合并其他骨骼系统畸形。②这73例胎儿CMA检测结果中,10例含有致病性/可能致病性染色体拷贝数变异(CNV),总致病性检出率为13.7%(10/73),临床意义不明变体(VUS) CNV检出率为2.7%(2/73),其中非致病CNV检出率为83.6%(61/73)。③44例同时接受染色体核型分析和CMA检测的FL偏短胎儿中,孤立组为34例,复杂组为10例。复杂组中,染色体核型异常率(10.0%)和CMA技术检出异常率(30.0%)比较,差异无统计学意义(χ2=2.08,P=0.149),④这73例胎儿均未检出含有已知FGFR3基因的致病性位点突变。其中63例CMA技术检出结果呈阴性胎儿中,7例因产前超声检测高度怀疑为长骨发育不良(四肢长骨较同胎龄儿正常值<-3 s),进一步进行全外显子组测序(WES)检测结果显示,1例胎儿检测到COL1A1基因突变(c.2519C>T; p.P840L),判断为VUS者。⑤随访结果显示,31例(42.5%)胎儿足月分娩,15例(48.4%)活产儿在婴儿期出现生长速率为同龄儿正常值的第10百分位数,其他发育评估指标未见明显异常。

结论

CMA技术在产前诊断FL偏短胎儿具有一定应用价值,并且检出率较染色体核型分析更高。建议临床将CMA作为一线检测技术,应用于产前超声检查提示FL偏短胎儿中,尤其是应用于合并其他结构异常者中。

Objective

To explore the genetic etiology of fetuses with short femur length (FL) at the genome-wide level by chromosome microarray analysis (CMA) technique.

Methods

Seventy-three pregnant women and their fetuses who had short FL by prenatal ultrasonography and underwent invasive prenatal diagnosis at Guangzhou Women and Children′s Medical Center from January 2019 to December 2020 were enrolled in the study. According to whether they were combined with other obvious structural developmental abnormalities, they were divided into isolated group (n=56) and complex group (n=17). Chromosomal karyotyping and CMA were performed, and results were analyzed by applying CHAS software and related bioinformatics methods. The procedures followed in this study were in accordance with the ethical standards set by the Human Experimentation Committee of Guangzhou Women and Children′s Medical Center, and were approved by this ethical committee (Approval No. [2019] 11600). Written informed consents were obtained form all pregnant women.

Results

① Of these 56 fetuses in isolated group, 6 were combined with ultrasound soft index abnormalities; of these 17 fetuses in complex group, 6 were combined with neurological malformations, 6 with cardiovascular malformations, and 6 with malformations of other skeletal systems. ②The CMA results of 73 fetuses showed that 10 cases contained pathogenic/probably pathogenic copy number variants (CNV), with a total pathogenicity detection rate of 13.7% (10/73), the variants of uncertain significance (VUS) detection rate of 2.7% (2/73), and a benign CNV detection rate of 83.6% (61/73). ③Of the 44 short FL fetuses that underwent both chromosomal karyotyping and CMA testing, 34 were in isolated group and 10 were in complex group. Comparison of the rates of chromosomal karyotype abnormality (10.0%) and abnormal detection by CMA technique (30.0%) in the complex group showed no statistically significant difference (χ2=2.08, P=0.149). ④None of the 73 fetuses were found to contain the known pathogenic locus of FGFR3 gene. Of the 63 CMA-negative fetuses, 7 fetuses were highly suspected of having long-bone dysplasia due to prenatal ultrasonography (long bones of the limbs <3% of the children of the same gestational age), and further whole exome sequencing (WES) testing showed that the COL1A1 mutation (c.2519C>T; p. P840L) was detected in 1 fetus as VUS. ⑤Follow-up showed that 31 (42.5%) fetuses were delivered at term, 15 (48.4%) live births showed a growth rate of long below the 10th percentile of the same-age child in infancy, and other developmental assessments did not show any obvious abnormalities.

Conclusions

CMA has a certain application value in prenatal diagnosis of fetuses with short FL and has a higher detection rate than chromosomal karyotyping. Therefore, it is suggested that CMA should be used as a first-line technique in the prenatal diagnosis of fetuses with short FL on prenatal ultrasound examination, especially when combined with other structural abnormalities.

表1 复杂组17例FL偏短并伴其他结构畸形胎儿超声检查及随访结果
胎儿编号 胎龄(周) 与正常值比较 胎儿其他结构异常超声表现 随访结果
1 28 <-2 s(FL) 后颅窝增宽、腹腔积液、心胸比增大、心律不齐 引产终止妊娠
2 26 <-2 s(FL) 心脏室间隔缺损、单脐动脉、羊水过少 引产终止妊娠
3 25 <-2 s(FL) 双足内翻 失访
4 30 <-2 s(FL) 心胸比增大、心包积液、羊水过少 足月顺产,产后诊断为孤立性FL偏短
5 17 <-3 s(四肢长骨) 侧脑室扩张、淋巴管瘤、蛛网膜囊肿、小下颌畸形、心脏室间隔缺损、下肢长骨成角畸形、双足内翻 引产终止妊娠
6 13 <-3 s(四肢长骨) 尺、桡骨发育异常及巨膀胱 失访
7 25 <-3 s(四肢长骨) 胼胝体缺如、小下颌畸形、羊水过多 引产终止妊娠
8 24 <-2 s(FL) 心脏畸形、巨膀胱 引产终止妊娠
9 26 <-2 s(FL) 十二指肠闭锁 引产终止妊娠
10 28 <-2 s(FL) 主动脉缩窄、腹部囊性包块 足月顺产,产后诊断为孤立性FL偏短
11 27 <-2 s(四肢长骨) 小脑发育不良 引产终止妊娠
12 32 <-2 s(FL) 室间隔缺损、双肾及肝回声增强 引产终止妊娠
13 25 <-2 s(FL) 眼距稍宽、颈部皱褶稍厚,鼻骨发育不良、右肾积水 失访
14 28 <-2 s(FL) 侧脑室扩张 足月顺产,产后诊断为孤立性FL偏短
15 25 <-3 s(四肢长骨) 小下颌畸形、双侧脑室扩张、颈后皮肤皱褶增厚、右肾盂扩张、双足内翻 引产终止妊娠
16 34 <-2 s(四肢长骨,FL) 室管膜下囊肿、透明隔腔小、右侧脑室扩张 引产终止妊娠
17 24 <-3 s(四肢长骨) 双足内翻 引产终止妊娠
表2 CMA检出结果为致病性/可能致病性CNV的10例FL偏短胎儿的相关检查结果及妊娠结局
图1 广州市妇女儿童医疗中心产前诊断中心总结的胎儿FL偏短的遗传学诊断流程图注:FL为股骨长度,WES为全外显子组测序,CMA为染色体微阵列分析
[1]
Speer PD, Canavan T, Simhan HN, et al. Prenatal midtrimester fetal long bone measurements and the prediction of small-for-gestational-age fetuses at term [J]. Am J Perinatol, 2014, 31(3): 231-236. DOI: 10.1055/s-0033-1345260.
[2]
Beke A, Papp C, Tóth-Pál E, et al. Trisomies and other chromosome abnormalities detected after positive sonographic findings [J]. J Reprod Med, 2005, 50(9): 675-691.
[3]
Rao R, Platt LD. Ultrasound screening: status of markers and efficacy of screening for structural abnormalities [J]. Semin Perinatol, 2016, 40(1): 67-78. DOI: 10.1053/j.semperi.2015.11.009.
[4]
Kaijomaa M, Ulander VM, Ryynanen M, et al. Risk of adverse outcomes in euploid pregnancies with isolated short fetal femur and humerus on second-trimester sonography [J]. J Ultrasound Med, 2016, 35(12): 2675-2680. DOI: 10.7863/ultra.16.01086.
[5]
Weisz B, David AL, Chitty L, et al. Association of isolated short femur in the mid-trimester fetus with perinatal outcome [J]. Ultrasound Obstet Gynecol, 2008, 31(5): 512-516. DOI: 10.1002/uog.5349.
[6]
Aviram A, Bardin R, Wiznitzer A, et al. Midtrimester isolated short femur length as a predictor of adverse pregnancy outcome [J]. Fetal Diagn Ther, 2015, 38(3): 205-211. DOI: 10.1159/000375446.
[7]
Mathiesen JM, Aksglaede L, Skibsted L, et al. Outcome of fetuses with short femur length detected at second-trimester anomaly scan: a national survey [J]. Ultrasound Obstet Gynecol, 2014, 44(2): 160-165. DOI: 10.1002/uog.13286.
[8]
Agathokleous M, Chaveeva P, Poon LC, et al. Meta-analysis of second-trimester markers for trisomy 21 [J]. Ultrasound Obstet Gynecol, 2013, 41(3): 247-261. DOI: 10.1002/uog.12364.
[9]
Chandler N, Best S, Hayward J, et al. Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management [J]. Genet Med, 2018, 20(11): 1430-1437. DOI: 10.1038/gim.2018.30.
[10]
Liu J, Huang L, He Z, et al. Clinical value of genetic analysis in prenatal diagnosis of short femur [J]. Mol Genet Genomic Med, 2019, 7(11): e978. DOI: 10.1002/mgg3.978.
[11]
Bardin R, Hadar E, Haizler-Cohen L, et al. Cytogenetic analysis in fetuses with late onset abnormal sonographic findings [J]. J Perinat Med, 2018, 46(9): 975-982. DOI: 10.1515/jpm-2017-0071.
[12]
Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen) [J]. Genet Med, 2020, 22(2): 245-257. DOI: 10.1038/s41436-019-0686-8.
[13]
Mohr-Sasson A, Toussia-Cohen S, Shapira M, et al. Long-term follow-up on fetuses with isolated sonographic finding of short long bones: a cohort study [J]. Arch Gynecol Obstet, 2020, 301(2): 459-463. DOI: 10.1007/s00404-019-05421-4.
[14]
American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis [J]. Obstet Gynecol, 2013, 122(6): 1374-1377. DOI: 10.1097/01.AOG.0000438962.16108.d1.
[15]
Bardin R, Hadar E, Haizler-Cohen L, et al. Cytogenetic analysis in fetuses with late onset abnormal sonographic findings [J]. J Perinat Med, 2018, 46(9): 975-982. DOI: 10.1515/jpm-2017-0071.
[16]
Tzadikevitch K, Singer A, Maya I, et al. Chromosomal microarray should be performed for cases of fetal short long bones detected prenatally [J]. Arch Gynecol Obstet, 2021, 303(1): 85-92. DOI: 10.1007/s00404-020-05729-6.
[17]
Bethune M. Literature review and suggested protocol for managing ultrasound soft markers for Down syndrome: thickened nuchal fold, echogenic bowel, shortened femur, shortened humerus, pyelectasis and absent or hypoplastic nasal bone [J]. Australas Radiol, 2007, 51(3): 218-225. DOI: 10.1111/j.1440-1673.2007.01713.x.
[18]
Richards S, Aziz N, Bale S, et al, Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology [J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
[19]
Papp C, Beke A, Mezei G, et al. Prenatal diagnosis of Turner syndrome: report on 69 cases [J]. J Ultrasound Med, 2006, 25(6): 711-717; quiz 718-720. DOI: 10.7863/jum.2006.25.6.711.
[20]
Klopocki E, Hennig BP, Dathe K, et al. Deletion and point mutations of PTHLH cause brachydactyly type E [J]. Am J Hum Genet, 2010, 86(3): 434-439. DOI: 10.1016/j.ajhg.2010.01.023.
[21]
Maass PG, Wirth J, Aydin A, et al. A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to brachydactyly type E [J]. Hum Mol Genet, 2010, 19(5): 848-860. DOI: 10.1093/hmg/ddp553.
[22]
Cox JJ, Willatt L, Homfray T, et al. A SOX9 duplication and familial 46,XX developmental testicular disorder [J]. N Engl J Med, 2011, 364(1): 91-93. DOI: 10.1056/NEJMc1010311.
[23]
Matsushita M, Kitoh H, Kaneko H, et al. A novel SOX9 H169Q mutation in a family with overlapping phenotype of mild campomelic dysplasia and small patella syndrome [J]. Am J Med Genet A, 2013, 161A(10): 2528-2534. DOI: 10.1002/ajmg.a.36134.
[24]
Smyk M, Obersztyn E, Nowakowska B, et al. Recurrent SOX9 deletion campomelic dysplasia due to somatic mosaicism in the father [J]. Am J Med Genet A, 2007, 143A(8): 866-870. DOI: 10.1002/ajmg.a.31631.
[25]
Barca-Tierno V, Aza-Carmona M, Barroso E, et al. Identification of a Gypsy SHOX mutation (p.A170P) in Léri-Weill dyschondrosteosis and Langer mesomelic dysplasia [J]. Eur J Hum Genet, 2011, 19(12): 1218-1225. DOI: 10.1038/ejhg.2011.128.
[26]
Binder G, Ranke MB, Martin DD. Auxology is a valuable instrument for the clinical diagnosis of SHOX haploinsufficiency in school-age children with unexplained short stature [J]. J Clin Endocrinol Metab, 200388(10): 4891-4896. DOI: 10.1210/jc.2003-030136.
[27]
Benito-Sanz S, Royo JL, Barroso E, et al. Identification of the first recurrent PAR1 deletion in Léri-Weill dyschondrosteosis and idiopathic short stature reveals the presence of a novel SHOX enhancer [J]. J Med Genet, 2012, 49(7): 442-450. DOI: 10.1136/jmedgenet-2011-100678.
[1] 韩厚美, 盛璇, 刘德泉, 高阳, 尹虹. 产前超声对胎儿环状胰腺的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(01): 46-50.
[2] 丁妍, 文华轩, 张梦雨, 陈思齐, 温昕, 彭桂艳, 曾晴, 罗丹丹, 廖伊梅, 秦越, 梁美玲, 李胜利. 胎儿小脑表面叶裂的产前超声研究[J]. 中华医学超声杂志(电子版), 2023, 20(01): 14-22.
[3] 刘双, 董虹美, 张晓航, 冉茜, 冉素真. 妊娠11~13+6周超声诊断胎儿单脐动脉及其与染色体异常的相关性[J]. 中华医学超声杂志(电子版), 2022, 19(09): 908-914.
[4] 张书杰, 姜凡, 罗平, 顾莉莉, 高玉伟, 周楠. 妊娠11~13+6周胎儿侧脑室脉络丛参数初步研究及异常病例分析[J]. 中华医学超声杂志(电子版), 2022, 19(09): 888-893.
[5] 张娟, 吴青青, 王莉, 张铁娟, 韩吉晶. 产前超声在胎儿骶尾部畸胎瘤成熟性鉴别中的价值[J]. 中华医学超声杂志(电子版), 2022, 19(08): 796-800.
[6] 韩利, 吴青青. 超声检查评估胎儿肝强回声的价值及预后分析[J]. 中华医学超声杂志(电子版), 2021, 18(11): 1061-1066.
[7] 张新梅, 赵华巍, 夏宇, 张一休, 戴晴, 姜玉新. 胎儿卵巢囊肿产前超声图像特点及预后评估[J]. 中华医学超声杂志(电子版), 2021, 18(05): 444-450.
[8] 熊微, 李胜利, 林清秀, 张梅芳. 胎儿侧脑室扩张程度与妊娠结局[J]. 中华医学超声杂志(电子版), 2021, 18(03): 290-295.
[9] 罗丹丹, 文华轩, 彭桂艳, 林毅, 廖伊梅, 梁美玲, 秦越, 曾晴, 党静, 李胜利. 新型智能产前超声技术在中晚孕期产前超声检查中的应用价值[J]. 中华医学超声杂志(电子版), 2020, 17(11): 1061-1069.
[10] 李胜利. 产前超声结果过度诊断与过度解读:困惑与对策[J]. 中华医学超声杂志(电子版), 2019, 16(07): 560-560.
[11] 赵旭亮, 田瑞霞, 王伦善, 魏玉业, 张曼, 俞敏. 早孕期胎儿颈项透明层超声检测联合胎儿DNA无创产前检测对高龄孕妇胎儿性别发育异常的诊断价值[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 478-482.
[12] 王宏, 段纯, 袁晖, 吴晓霞, 谢建生, 赵光临. 早孕期筛查唐氏综合征或18-三体综合征不同风险值与胎儿染色体异常及妊娠结局分析[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 646-654.
[13] 唐敬龙, 王丽媛, 冯雪花. 不良孕产史夫妇染色体核型的大样本分析[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(03): 314-319.
[14] 王飞飞, 谭世桥, 王晓东, 余海燕. 静脉导管血流频谱超声监测在围生期的应用[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(02): 131-134.
[15] 苏虹, 陈明, 王鸿凤, 张娜, 吴新华, 马琦, 申庆欣, 胡程程, 陈孟华. 胎儿先天性矫正型大动脉转位的产前超声心动图诊断[J]. 中华临床医师杂志(电子版), 2018, 12(11): 619-625.
阅读次数
全文


摘要