[1] |
Miller CJ, Golovina E, Gokuladhas S, et al. Unraveling ADHD: genes, co-occurring traits, and developmental dynamics [J]. Life Sci Alliance, 2025, 8(5): e202403029. DOI: 10.26508/lsa.202403029.
|
[2] |
Faraone SV, Bellgrove MA, Brikell I, et al. Attention-deficit/hyperactivity disorder [J]. Nat Rev Dis Primers, 2024, 10(1): 11. DOI: 10.1038/s41572-024-00495-0.
|
[3] |
Ayano G, Demelash S, Gizachew Y, et al. The global prevalence of attention deficit hyperactivity disorder in children and adolescents: an umbrella review of Meta-analyses [J]. J Affect Disord, 2023, 339: 860-866. DOI: 10.1016/j.jad.2023.07.071.
|
[4] |
|
[5] |
Zhang Y, Yin L, You C, et al. Efficacy and safety of methylphenidate and atomoxetine in medication-naive children with attention-deficit hyperactivity disorder in a real-world setting [J]. Drugs R D, 2024, 24(1): 29-39. DOI: 10.1007/s40268-023-00445-3.
|
[6] |
Drechsler R, Brem S, Brandeis D, et al. ADHD: current concepts and treatments in children and adolescents [J]. Neuropediatrics, 2020, 51(5): 315-335. DOI: 10.1055/s-0040-1701658.
|
[7] |
Martin-Key NA, Stevenson A, Roy P. Investigating the clinical utility of the combined use of objective and subjective measures of ADHD during treatment optimization [J]. J Clin Psychopharmacol, 2022, 42(2): 146-153. DOI: 10.1097/JCP.0000000000001350.
|
[8] |
Liu Q, Liao W, Yang L, et al. Aberrant amplitude of low-frequency fluctuation and functional connectivity in children with different subtypes of ADHD: a resting-state fNIRS study [J]. BMC Psychiatry, 2024, 24(1): 919. DOI: 10.1186/s12888-024-06350-6.
|
[9] |
Wu T, Liu X, Cheng F, et al. Dorsolateral prefrontal cortex dysfunction caused by a go/no-go task in children with attention-deficit hyperactivity disorder: a functional near-infrared spectroscopy study [J]. Front Neurosci, 2023, 17: 1145485. DOI: 10.3389/fnins.2023.1145485.
|
[10] |
Poliakova E, Conrad AL, Schieltz KM, et al. Using fNIRS to evaluate ADHD medication effects on neuronal activity: a systematic literature review [J]. Front Neuroimaging, 2023, 2: 1083036. DOI: 10.3389/fnimg.2023.1083036.
|
[11] |
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: different pathophysiologies and promising clinical applications [J]. Neurophotonics, 2023, 10(2): 023517. DOI: 10.1117/1.NPh.10.2.023517.
|
[12] |
Dolu N, Altinkaynak M, Guven A, et al. Effects of methylphenidate treatment in children with ADHD: a multimodal EEG/fNIRS approach [J]. Psychiatry Clin Psychopharmacol, 2019, 29(3): 285-292. DOI: 10.1080/24750573.2018.1542779.
|
[13] |
Matsuura N, Ishitoobi M, Arai S, et al. Effects of methylphenidate in children with attention deficit hyperactivity disorder: a near-infrared spectroscopy study with CANTAB ®[J]. Child Adolesc Psychiatry Ment Health, 2014, 8(1): 273. DOI: 10.1186/s13034-014-0032-5.
|
[14] |
Zhuo L, Zhao X, Zhai Y, et al. Transcutaneous electrical acupoint stimulation for children with attention-deficit/hyperactivity disorder: a randomized clinical trial [J]. Transl Psychiatry, 2022, 12(1): 165. DOI: 10.1038/s41398-022-01914-0.
|
[15] |
Grazioli S, Rosi E, Mauri M, et al. Patterns of response to methylphenidate administration in children with ADHD: a personalized medicine approach through clustering analysis [J]. Children, 2021, 8(11): 1008. DOI: 10.3390/children8111008.
|
[16] |
Nakanishi Y, Ota T, Iida J, et al. Differential therapeutic effects of atomoxetine and methylphenidate in childhood attention deficit/hyperactivity disorder as measured by near-infrared spectroscopy [J]. Child Adolesc Psychiatry Ment Health, 2017, 11: 26. DOI: 10.1186/s13034-017-0163-6.
|
[17] |
Nagashima M, Monden Y, Dan I, et al. Neuropharmacological effect of atomoxetine on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy [J]. Neurophotonics, 2014, 1(2): 025007. DOI: 10.1117/1.NPh.1.2.025007.
|
[18] |
Kurane K, Lin N, Dan I, et al. Visualizing changes in cerebral hemodynamics in children with ADHD who have discontinued methylphenidate: a pilot study on using brain function for medication discontinuation decisions [J]. Brain Dev, 2024, 46(10): 373-382. DOI: 10.1016/j.braindev.2024.09.004.
|
[19] |
Ota T, Iida J, Nakanishi Y, et al. Increased prefrontal hemodynamic change after atomoxetine administration in pediatric attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy [J]. Psychiatry Clin Neurosci, 2015, 69(3): 161-170. DOI: 10.1111/pcn.12251.
|
[20] |
Jang S, Choi J, Oh J, et al. Use of virtual reality working memory task and functional near-infrared spectroscopy to assess brain hemodynamic responses to methylphenidate in ADHD children [J]. Front Psychiatry, 2020, 11: 564618. DOI: 10.3389/fpsyt.2020.564618.
|
[21] |
Wu WJ, Cui LB, Cai M, et al. A parallel-group study of near-infrared spectroscopy-neurofeedback in children with attention deficit hyperactivity disorder [J]. Psychiatry Res, 2022, 309: 114364. DOI: 10.1016/j.psychres.2021.114364.
|
[22] |
Rahimpour Jounghani A, Gozdas E, Dacorro L, et al. Neuromonitoring-guided working memory intervention in children with ADHD [J]. iScience, 2024, 27(11): 111087. DOI: 10.1016/j.isci.2024.111087.
|
[23] |
Wang J, Zou Z, Huang H, et al. Effects of repetitive transcranial magnetic stimulation on prefrontal cortical activation in children with attention deficit hyperactivity disorder: a functional near-infrared spectroscopy study [J]. Front Neurol, 2024, 15: 1503975. DOI: 10.3389/fneur.2024.1503975.
|
[24] |
Duffy KA, Rosch KS, Nebel MB, et al. Increased integration between default mode and task-relevant networks in children with ADHD is associated with impaired response control [J]. Dev Cogn Neurosci, 2021, 50: 100980. DOI: 10.1016/j.dcn.2021.100980.
|
[25] |
Ainsworth M, Wu Z, Browncross H, et al. Frontopolar cortex shapes brain network structure across prefrontal and posterior cingulate cortex [J]. Prog Neurobiol, 2022, 217: 102314. DOI: 10.1016/j.pneurobio.2022.102314.
|
[26] |
Yamamuro K. Near-infrared spectroscopy in child and adolescent neurodevelopmental disorders [J]. PCN Rep, 2022, 1(4): e59. DOI: 10.1002/pcn5.59.
|
[27] |
Stone HL, Mitchell JL, Fuentes-Jimenez M, et al. Anatomically distinct regions in the inferior frontal cortex are modulated by task and reading skill [J]. J Neurosci, 2025, 45(19): e1767242025. DOI: 10.1523/JNEUROSCI.1767-24.2025.
|
[28] |
Ishii-Takahashi A, Takizawa R, Nishimura Y, et al. Neuroimaging-aided prediction of the effect of methylphenidate in children with attention-deficit hyperactivity disorder: a randomized controlled trial [J]. Neuropsychopharmacology, 2015, 40(12): 2852-2861. DOI: 10.1038/npp.2015.154.
|
[29] |
Schecklmann M, Schaldecker M, Aucktor S, et al. Effects of methylphenidate on olfaction and frontal and temporal brain oxygenation in children with ADHD [J]. J Psychiatr Res, 2011, 45(11): 1463-1470. DOI: 10.1016/j.jpsychires.2011.05.011.
|
[30] |
Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior [J]. Neuron, 2022, 110(17): 2743-2770. DOI: 10.1016/j.neuron.2022.05.022.
|
[31] |
Brevegliere R, Brandolani R, Diomedi S, et al. Role of the medial posterior parietal cortex in orchestrating attention and reaching [J]. J Neurosci, 2025, 45(1): e06592424. DOI: 10.1523/JNEUROSCI.0659-24.2024.
|
[32] |
Yin Q, Johnson EL, Tang L, et al. Direct brain recordings reveal occipital cortex involvement in memory development [J]. Neuropsychologia, 2020, 148: 107625. DOI: 10.1016/j.neuropsychologia.2020.107625.
|
[33] |
Kobayashi M, Ikeda T, Tokuda T, et al. Acute administration of methylphenidate differentially affects cortical processing of emotional facial expressions in attention-deficit hyperactivity disorder children as studied by functional near-infrared spectroscopy [J]. Neurophotonics, 2020, 7(2): 025003. DOI: 10.1117/1.NPh.7.2.025003.
|
[34] |
Kim JG, Gregory E, Landau B, et al. Functions of ventral visual cortex after bilateral medial temporal lobe damage [J]. Prog Neurobiol, 2020, 191: 101819. DOI: 10.1016/j.pneurobio.2020.101819.
|
[35] |
Zhu Y, Liu S, Zhang F, et al. Response inhibition in children with different subtypes/presentations of attention deficit hyperactivity disorder: a near-infrared spectroscopy study [J]. Front Neurosci, 2023, 17: 1119289. DOI: 10.3389/fnins.2023.1119289.
|