[1] |
|
[2] |
Yu-Wai-Man P, Chinnery PF. Dominant optic atrophy: novel OPA1 mutations and revised prevalence estimates [J]. Ophthalmology, 2013, 120(8): 1712. e1. DOI: 10.1016/j.ophtha.2013.04.022.
|
[3] |
Thiselton DL, Alexander C, Morris A, et al. A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: evidence for a founder effect [J]. Hum Genet, 2001, 109(5): 498-502. DOI: 10.1007/s004390100600.
|
[4] |
Lenaers G, Hamel C, Delettre C, et al. Dominant optic atrophy [J]. Orphanet J Rare Dis, 2012, 7(1): 46. DOI: 10.1186/1750-1172-7-46.
|
[5] |
Jurkute N, Leu C, Pogoda HM, et al. SSBP1 mutations in dominant optic atrophy with variable retinal degeneration [J]. Ann Neurol, 2019, 86(3): 368-383. DOI: 10.1002/ana.25550.
|
[6] |
Schwartz GJ, Haycock GB, Edelmann CM Jr, et al. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine [J]. Pediatrics, 1976, 58(2): 259-263.
|
[7] |
Mian AN, Schwartz GJ. Measurement and estimation of glomerular filtration rate in children [J]. Adv Chronic Kidney Dis, 2017, 24(6): 348-356. DOI: 10.1053/j.ackd.2017.09.011.
|
[8] |
Del Dotto V, Ullah F, Di Meo I, et al. SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder [J]. J Clin Invest, 2020, 130(1): 108-125. DOI: 10.1172/JCI128514.
|
[9] |
|
[10] |
Gustafson MA, McCormick EM, Perera L, et al. Mitochondrial single-stranded DNA binding protein novel de novo SSBP1 mutation in a child with single large-scale mtDNA deletion (SLSM D) clinically manifesting as Pearson, Kearns-Sayre, and Leigh syndromes [J]. PLoS One, 2019, 14(9): e0221829. DOI: 10.1371/journal.pone.0221829.
|
[11] |
Kaltseis K, Indelicato E, Broessner G, et al. Case report: monoclonal CGRP-antibody treatm-ent in a migraine patient with a mutation in the mitochondrial single-strand binding protein ( SSBP1) [J]. Front Neurol, 2022, 13: 958463. DOI: 10.3389/fneur.2022.958463.
|
[12] |
Lee Y, Kim T, Lee M, et al. De novo development of mtDNA deletion due to decreased POLG and SSBP1 expression in humans [J]. Genes (Basel), 2021, 12(2): 284. DOI: 10.3390/genes12020284.
|
[13] |
Jurkute N, D′Esposito F, Robson AG, et al. SSBP1-disease update: expanding the genetic and clinical spectrum, reporting variable penetrance and confirming recessive inheritance [J]. Invest Ophthalmol Vis Sci, 2021, 62(15): 12. DOI: 10.1167/iovs.62.15.12.
|
[14] |
Castellani CA, Longchamps RJ, Sun J, et al. Thinking outside the nucleus: mitochondrial DNA copy number in health and disease [J]. Mitochondrion, 2020, 53: 214-223. DOI: 10.1016/j.mito.2020.06.004.
|
[15] |
|
[16] |
Wen S, Niedzwiecka K, Zhao W, et al. Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy [J]. Sci Rep, 2016, 6: 36313. DOI: 10.1038/srep36313.
|
[17] |
Imasawa T, Hirano D, Nozu K, et al. Clinicopathologic features of mitochondrial nephropathy [J]. Kidney Int Rep, 2022, 7(3): 580-590. DOI: 10.1016/j.ekir.2021.12.028.
|
[18] |
Meunier I, Bocquet B, Defoort-Dhellemmes S, et al. Characterization of SSBP1-related optic atrophy and foveopathy [J]. Sci Rep, 2021, 11(1): 18703. DOI: 10.1038/s41598-021-98150-1.
|
[19] |
Stojković G, Makarova AV, Wanrooij PH, et al. Oxidative DNA damage stalls the human mitochondrial replisome [J]. Sci Rep, 2016, 6: 28942. DOI: 10.1038/srep28942.
|
[20] |
|