[1] |
De los Santos MJ, Apter S, et al. Revised guidelines for good practice in IVF laboratories (2015)[J]. Hum Reprod, 2016, 31(4): 685-686. DOI: 10.1093/humrep/dew016.
|
[2] |
Bradley CK, Traversa MV, Hobson N, et al. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance[J]. Reprod Biomed Online, 2017, 34(6): 567-574. DOI: 10.1016/j.rbmo.2017.03.013.
|
[3] |
Rosenbusch B. The chromosomal constitution of embryos arising from monopronuclear oocytes in programmes of assisted reproduction[J]. Int J of Reproduct Med, 2014, 2014: 418198. DOI: 10.1155/2014/418198.
|
[4] |
Fabozzi G, Rega E, Starita MF, et al. The influence of clinical and laboratory factors on the formation of monopronucleated zygotes after intracytoplasmic sperm injection (ICSI)[J]. Zygote (Cambridge, England), 2019, 27(2): 64-68. DOI: 10.1017/S0967199418000473.
|
[5] |
Soler N, Bautista-Llàcer R, Escrich L, et al. Rescuing monopronucleated-derived human blastocysts: a model to study chromosomal topography and fingerprinting[J]. Fertil Steril, 2021, 116(2): 583-596. DOI: 10.1016/j.fertnstert.2021.03.038.
|
[6] |
Jose de Carli G, Campos Pereira T. On human parthenogenesis[J]. Med Hypotheses, 2017, 106: 57-60. DOI: 10.1016/j.mehy.2017.07.008.
|
[7] |
Wasserzug-Pash P, Klutstein M. Epigenetic aging in oocytes[J]. Aging (Albany NY), 2023, 15(15):7334-7335. DOI: 10.18632/aging.204976.
|
[8] |
Cardona Barberán A, Boel A, Vanden Meerschaut F, et al. Diagnosis and treatment of male infertility-related fertilization failure[J]. J Clin Med, 2020, 9(12): 3899. DOI: 10.3390/jcm9123899.
|
[9] |
Asa E, Tabatabaee R, Farrokhi A, et al. Relationship between meiotic spindles visualization and intracytoplasmic sperm injection outcomes in human oocytes[J]. Anat Cell Biol, 2017, 50(1): 26-32. DOI: 10.5115/acb.2017.50.1.26.
|
[10] |
Fishman EL, Jo K, Nguyen QPH, et al. A novel atypical sperm centriole is functional during human fertilization[J]. Nat Commun, 2018, 9(1): 2210. DOI: 10.1038/s41467-018-04678-8.
|
[11] |
Liao QY, Huang B, Zhang SJ, et al. Influence of different quality sperm on early embryo morphokinetic parameters and cleavage patterns: a retrospective time-lapse study[J]. Curr Med Sci, 2020, 40(5): 960-967. DOI: 10.1007/s11596-020-2272-3.
|
[12] |
Nabeel-Shah S, Garg J, Ashraf K, et al. Multilevel interrogation of H3.3 reveals a primordial role in transcription regulation[J]. Epigenet Chrom, 2023, 16(1): 10. DOI: 10.1186/s13072-023-00484-9.
|
[13] |
Smith R, Pickering SJ, Kopakaki A, et al. HIRA contributes to zygote formation in mice and is implicated in human 1PN zygote phenotype[J]. Reproduction, 2021, 161(6): 697-707. DOI: 10.1530/REP-20-0636.
|
[14] |
Azevedo AR, Pinho MJ, Silva J, et al. Molecular cytogenetics of human single pronucleated zygotes[J]. Reproduct Sci, 2014, 21(12): 1472-1482. DOI: 10.1177/1933719114530185.
|
[15] |
Hondo S, Arichi A, Muramatsu H, et al. Clinical outcomes of transfer of frozen and thawed single blastocysts derived from nonpronuclear and monopronuclear zygotes[J]. Reproduct Med Biol, 2019, 18(3): 278-283. DOI: 10.1002/rmb2.12275.
|
[16] |
Wei X, Enatsu N, Furuhashi K, et al. Developmental trajectory of monopronucleated zygotes after in vitro fertilization when they include both male and female genomes[J]. Fertil Steril, 2022, 117(1): 213-220. DOI: 10.1016/j.fertnstert.2021.08.036.
|
[17] |
Kai Y, Moriwaki H, Yumoto K, et al. Assessment of developmental potential of human single pronucleated zygotes derived from conventional in vitro fertilization[J]. J Assist Reproduct Genet, 2018, 35(8): 1377-1384. DOI: 10.1007/s10815-018-1241-2.
|
[18] |
Fu L, Chu D, Zhou W, et al. Strictly selected mono- and non-pronuclear blastocysts could result in appreciable clinical outcomes in IVF cycles[J]. Hum Fertil, 2020, 1-8. DOI: 10.1080/14647273.2020.1815243.
|
[19] |
Lagalla C, Tarozzi N, Sciajno R, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts[J]. Reproduct Biomed Online, 2017, 34(2): 137-146. DOI: 10.1016/j.rbmo.2016.11.008.
|
[20] |
Fragouli E, Munne S, Wells D. The cytogenetic constitution of human blastocysts: insights from comprehensive chromosome screening strategies[J]. Hum Reproduct Updat, 2019, 25(1): 15-33. DOI: 10.1093/humupd/dmy036.
|
[21] |
Yin BL, Hao HY, Zhang YN, et al. Good quality blastocyst from non-/mono-pronuclear zygote may be used for transfer during IVF[J]. Syst Biol Reproduct Medi, 2016, 62(2): 139-145. DOI: 10.3109/19396368.2015.1137993.
|
[22] |
Xie PY, Tang Y, Hu L, et al. Identification of biparental and diploid blastocysts from monopronuclear zygotes with the use of a single-nucleotide polymorphism array[J]. Fertil Steril, 2018, 110(3): 545-554.e5.DOI: 10.1016/j.fertnstert.2018.04.034.
|
[23] |
Hirata K, Goto S, Izumi Y, et al. Chromosome analysis of blastocysts derived from single pronuclear zygotes by array CGH and clinical outcomes by the transfer of single pronuclear zygotes[J]. J Assist Reproduct Genet, 2020, 37(7): 1645-1652. DOI: 10.1007/s10815-020-01800-y.
|
[24] |
Mateo S, Vidal F, Parriego M, et al. Could monopronucleated ICSI zygotes be considered for transfer? Analysis through time-lapse monitoring and PGS[J]. J Assist Reprod Genet, 2017, 34(7): 905-911. DOI: 10.1007/s10815-017-0937-z.
|
[25] |
Mateo S, Vidal F, Carrasco B, et al. Morphokinetics and in vitro developmental potential of monopronucleated ICSI zygotes until the blastocyst stage[J]. Zygote, 2020, 28(3): 217-222. DOI: 10.1017/S0967199420000027.
|
[26] |
Si J, Zhu X, Lyu Q, et al. Obstetrical and neonatal outcomes after transfer of cleavage-stage and blastocyst-stage embryos derived from monopronuclear zygotes: a retrospective cohort study[J]. Fertil Steril, 2019, 112(3): 527-533. DOI: 10.1016/j.fertnstert.2019.04.045.
|
[27] |
Wei YL, Zhu GJ, Ren XL, et al. Developmental potential and clinical value of embryos with abnormal cleavage rate[J]. Curr Med Sci, 2019, 39(1): 118-121. DOI: 10.1007/s11596-019-2008-4.
|
[28] |
Li M, Dang Y, Wang Y, et al. Value of transferring embryos derived from monopronucleated (1PN) zygotes at the time of fertilization assessment[J]. Zygote, 2020, 28(3): 241-246. DOI: 10.1017/S096719942000009X.
|
[29] |
Li M, Huang J, Zhuang X, et al. Obstetric and neonatal outcomes after the transfer of vitrified-warmed blastocysts developing from nonpronuclear and monopronuclear zygotes[J]. Fertil Steril, 2021, 115(1): 110-117. DOI: 10.1016/j.fertnstert.2020.07.019.
|
[30] |
Destouni A, Dimitriadou E, Masset H, et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M[J]. Hum Reproduct, 2018, 33(12): 2302-2311. DOI: 10.1093/humrep/dey325.
|
[31] |
Capalbo A, Treff N, Cimadomo D, et al. Abnormally fertilized oocytes can result in healthy live births: improved genetic technologies for preimplantation genetic testing can be used to rescue viable embryos in in vitro fertilization cycles[J]. Fertil Steril, 2017, 108(6): 1007.e3-1015.e3. DOI: 10.1016/j.fertnstert.2017.08.004.
|
[32] |
Araki E, Itoi F, Honnma H, et al. Correlation between the pronucleus size and the potential for human single pronucleus zygotes to develop into blastocysts∶1PN zygotes with large pronuclei can expect an embryo development to the blastocyst stage that is similar to the development of 2PN zygotes[J]. J Assist Reproduct Genet, 2018, 35(5): 817-823. DOI: 10.1007/s10815-018-1137-1.
|
[33] |
Fujimine-Sato A, Kuno T, Higashi K, et al. Exploration of the cytoplasmic function of abnormally fertilized embryos via novel pronuclear-stage cytoplasmic transfer[J]. Int J Mol Sci, 2021, 22(16): 8765. DOI: 10.3390/ijms22168765.
|