Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2024, Vol. 20 ›› Issue (03): 260 -265. doi: 10.3877/cma.j.issn.1673-5250.2024.03.003

Special Column of Reproductive Medicine

Current research status of clinical studies on monopronuclear embryos in in vitro fertilization cycles

Qingzhuo Gao1, Yifan Kang1, Zhihong Wang2,()   

  1. 1. Department of Obstetrics and Gynecology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
    2. Department of Reproductive Center, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2023-11-30 Revised:2024-04-05 Published:2024-06-01
  • Corresponding author: Zhihong Wang
  • Supported by:
    Key Research and Development Project of Science and Technology Department of Shanxi Province(201903D321163)

Monopronuclear embryos refer to embryos in which only one pronucleus (1PN) is observed between 16 to 18 hours after fertilization, which is not uncommon in in vitro fertilization-embryo transfer (IVF-ET). Due to the high rate of chromosomal abnormalities in 1PN embryos and unsatisfactory clinical pregnancy outcomes after IVF-ET, transplantation of 1PN embryos is usually not performed. In recent years, with the development of blastocyst culture and preimplantation genetic testing (PGT) technology, 1PN embryos have attracted more and more attention in the field of assisted reproductive technology experts. Studies have demonstrated that some 1PN embryos chromosomes are normal and may still deliver healthy babies after IVF-ET, so their clinical values deserve further exploration. The author intends to elaborate on the latest research progress on the mechanism of 1PN, and chromosomal composition, clinical outcome and clinical value after IVF-ET of 1PN embryos, aiming to provide ideas for the rational clinical application of 1PN embryos.

图1 1PN胚胎染色体构成图注:1PN为1个原核,2PB为2个极体,1PB为1个极体,pPNBD为成熟前原核核膜破裂
[1]
De los Santos MJ, Apter S, et al. Revised guidelines for good practice in IVF laboratories (2015)[J]. Hum Reprod, 2016, 31(4): 685-686. DOI: 10.1093/humrep/dew016.
[2]
Bradley CK, Traversa MV, Hobson N, et al. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance[J]. Reprod Biomed Online, 2017, 34(6): 567-574. DOI: 10.1016/j.rbmo.2017.03.013.
[3]
Rosenbusch B. The chromosomal constitution of embryos arising from monopronuclear oocytes in programmes of assisted reproduction[J]. Int J of Reproduct Med, 2014, 2014: 418198. DOI: 10.1155/2014/418198.
[4]
Fabozzi G, Rega E, Starita MF, et al. The influence of clinical and laboratory factors on the formation of monopronucleated zygotes after intracytoplasmic sperm injection (ICSI)[J]. Zygote (Cambridge, England), 2019, 27(2): 64-68. DOI: 10.1017/S0967199418000473.
[5]
Soler N, Bautista-Llàcer R, Escrich L, et al. Rescuing monopronucleated-derived human blastocysts: a model to study chromosomal topography and fingerprinting[J]. Fertil Steril, 2021, 116(2): 583-596. DOI: 10.1016/j.fertnstert.2021.03.038.
[6]
Jose de Carli G, Campos Pereira T. On human parthenogenesis[J]. Med Hypotheses, 2017, 106: 57-60. DOI: 10.1016/j.mehy.2017.07.008.
[7]
Wasserzug-Pash P, Klutstein M. Epigenetic aging in oocytes[J]. Aging (Albany NY), 2023, 15(15):7334-7335. DOI: 10.18632/aging.204976.
[8]
Cardona Barberán A, Boel A, Vanden Meerschaut F, et al. Diagnosis and treatment of male infertility-related fertilization failure[J]. J Clin Med, 2020, 9(12): 3899. DOI: 10.3390/jcm9123899.
[9]
Asa E, Tabatabaee R, Farrokhi A, et al. Relationship between meiotic spindles visualization and intracytoplasmic sperm injection outcomes in human oocytes[J]. Anat Cell Biol, 2017, 50(1): 26-32. DOI: 10.5115/acb.2017.50.1.26.
[10]
Fishman EL, Jo K, Nguyen QPH, et al. A novel atypical sperm centriole is functional during human fertilization[J]. Nat Commun, 2018, 9(1): 2210. DOI: 10.1038/s41467-018-04678-8.
[11]
Liao QY, Huang B, Zhang SJ, et al. Influence of different quality sperm on early embryo morphokinetic parameters and cleavage patterns: a retrospective time-lapse study[J]. Curr Med Sci, 2020, 40(5): 960-967. DOI: 10.1007/s11596-020-2272-3.
[12]
Nabeel-Shah S, Garg J, Ashraf K, et al. Multilevel interrogation of H3.3 reveals a primordial role in transcription regulation[J]. Epigenet Chrom, 2023, 16(1): 10. DOI: 10.1186/s13072-023-00484-9.
[13]
Smith R, Pickering SJ, Kopakaki A, et al. HIRA contributes to zygote formation in mice and is implicated in human 1PN zygote phenotype[J]. Reproduction, 2021, 161(6): 697-707. DOI: 10.1530/REP-20-0636.
[14]
Azevedo AR, Pinho MJ, Silva J, et al. Molecular cytogenetics of human single pronucleated zygotes[J]. Reproduct Sci, 2014, 21(12): 1472-1482. DOI: 10.1177/1933719114530185.
[15]
Hondo S, Arichi A, Muramatsu H, et al. Clinical outcomes of transfer of frozen and thawed single blastocysts derived from nonpronuclear and monopronuclear zygotes[J]. Reproduct Med Biol, 2019, 18(3): 278-283. DOI: 10.1002/rmb2.12275.
[16]
Wei X, Enatsu N, Furuhashi K, et al. Developmental trajectory of monopronucleated zygotes after in vitro fertilization when they include both male and female genomes[J]. Fertil Steril, 2022, 117(1): 213-220. DOI: 10.1016/j.fertnstert.2021.08.036.
[17]
Kai Y, Moriwaki H, Yumoto K, et al. Assessment of developmental potential of human single pronucleated zygotes derived from conventional in vitro fertilization[J]. J Assist Reproduct Genet, 2018, 35(8): 1377-1384. DOI: 10.1007/s10815-018-1241-2.
[18]
Fu L, Chu D, Zhou W, et al. Strictly selected mono- and non-pronuclear blastocysts could result in appreciable clinical outcomes in IVF cycles[J]. Hum Fertil, 2020, 1-8. DOI: 10.1080/14647273.2020.1815243.
[19]
Lagalla C, Tarozzi N, Sciajno R, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts[J]. Reproduct Biomed Online, 2017, 34(2): 137-146. DOI: 10.1016/j.rbmo.2016.11.008.
[20]
Fragouli E, Munne S, Wells D. The cytogenetic constitution of human blastocysts: insights from comprehensive chromosome screening strategies[J]. Hum Reproduct Updat, 2019, 25(1): 15-33. DOI: 10.1093/humupd/dmy036.
[21]
Yin BL, Hao HY, Zhang YN, et al. Good quality blastocyst from non-/mono-pronuclear zygote may be used for transfer during IVF[J]. Syst Biol Reproduct Medi, 2016, 62(2): 139-145. DOI: 10.3109/19396368.2015.1137993.
[22]
Xie PY, Tang Y, Hu L, et al. Identification of biparental and diploid blastocysts from monopronuclear zygotes with the use of a single-nucleotide polymorphism array[J]. Fertil Steril, 2018, 110(3): 545-554.e5.DOI:10.1016/j.fertnstert.2018.04.034.
[23]
Hirata K, Goto S, Izumi Y, et al. Chromosome analysis of blastocysts derived from single pronuclear zygotes by array CGH and clinical outcomes by the transfer of single pronuclear zygotes[J]. J Assist Reproduct Genet, 2020, 37(7): 1645-1652. DOI: 10.1007/s10815-020-01800-y.
[24]
Mateo S, Vidal F, Parriego M, et al. Could monopronucleated ICSI zygotes be considered for transfer? Analysis through time-lapse monitoring and PGS[J]. J Assist Reprod Genet, 2017, 34(7): 905-911. DOI: 10.1007/s10815-017-0937-z.
[25]
Mateo S, Vidal F, Carrasco B, et al. Morphokinetics and in vitro developmental potential of monopronucleated ICSI zygotes until the blastocyst stage[J]. Zygote, 2020, 28(3): 217-222. DOI: 10.1017/S0967199420000027.
[26]
Si J, Zhu X, Lyu Q, et al. Obstetrical and neonatal outcomes after transfer of cleavage-stage and blastocyst-stage embryos derived from monopronuclear zygotes: a retrospective cohort study[J]. Fertil Steril, 2019, 112(3): 527-533. DOI: 10.1016/j.fertnstert.2019.04.045.
[27]
Wei YL, Zhu GJ, Ren XL, et al. Developmental potential and clinical value of embryos with abnormal cleavage rate[J]. Curr Med Sci, 2019, 39(1): 118-121. DOI: 10.1007/s11596-019-2008-4.
[28]
Li M, Dang Y, Wang Y, et al. Value of transferring embryos derived from monopronucleated (1PN) zygotes at the time of fertilization assessment[J]. Zygote, 2020, 28(3): 241-246. DOI: 10.1017/S096719942000009X.
[29]
Li M, Huang J, Zhuang X, et al. Obstetric and neonatal outcomes after the transfer of vitrified-warmed blastocysts developing from nonpronuclear and monopronuclear zygotes[J]. Fertil Steril, 2021, 115(1): 110-117. DOI: 10.1016/j.fertnstert.2020.07.019.
[30]
Destouni A, Dimitriadou E, Masset H, et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M[J]. Hum Reproduct, 2018, 33(12): 2302-2311. DOI: 10.1093/humrep/dey325.
[31]
Capalbo A, Treff N, Cimadomo D, et al. Abnormally fertilized oocytes can result in healthy live births: improved genetic technologies for preimplantation genetic testing can be used to rescue viable embryos in in vitro fertilization cycles[J]. Fertil Steril, 2017, 108(6): 1007.e3-1015.e3. DOI: 10.1016/j.fertnstert.2017.08.004.
[32]
Araki E, Itoi F, Honnma H, et al. Correlation between the pronucleus size and the potential for human single pronucleus zygotes to develop into blastocysts∶1PN zygotes with large pronuclei can expect an embryo development to the blastocyst stage that is similar to the development of 2PN zygotes[J]. J Assist Reproduct Genet, 2018, 35(5): 817-823. DOI: 10.1007/s10815-018-1137-1.
[33]
Fujimine-Sato A, Kuno T, Higashi K, et al. Exploration of the cytoplasmic function of abnormally fertilized embryos via novel pronuclear-stage cytoplasmic transfer[J]. Int J Mol Sci, 2021, 22(16): 8765. DOI: 10.3390/ijms22168765.
[1] Jinping Wang, Jiajia Wang, Yan Li, Qin Wang, Jing Zhang, Xiaoyi Chen, Xin Lin. Preliminary application of a new cone-head uterine tube in hysterosalping constrast sonography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(03): 272-277.
[2] Dan Ge, Meilin Tu, Fei Ou. Morphological analysis of fallopian tubes in infertility patients by four-dimensional hysterosalpingo-contrast sonography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(01): 68-73.
[3] Chen Feng, Ying Zheng, Tong Wu, Jing Li, Mindi Xia, Juanjuan Lu, Yujie Dang. Analysis of assisted pregnancy outcomes of ring chromosome carriers[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(01): 58-64.
[4] Li Wang, Yueying Wang, Fen Zhou, Yukun Guo, Lina Wei. Current research status in effect of gonadotropin-releasing hormone antagonist on endometrial receptivity[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 629-635.
[5] Wenrong Dai, Lijuan Zhao, Zhihui Li. Research progress of influence of extracellular vesicles on embryo implantation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 616-620.
[6] Quan Wei, Shen Zhang, Huijia Chen, Heng Zou, Lina Hu. Current research progress on correlation between female reproductive tract microbiota and assisted reproductive technology[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(02): 151-155.
[7] Jun Wang, Zhenqiang Zhang, Xiyi Wang, Xingqing Gou, Yuping He. Analysis of influencing factors on results of embryo preimplantation genetic testing for chromosome structural rearrangement in chromosomal reciprocal translocation carriers[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 652-659.
[8] Yuting Chen, Ye Yang, Qijun Xie, Xiufeng Ling. Research advances of reproductive tract microorganism abnormality in female infertility-related diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 615-620.
[9] Xiaoli Wang, Qi Li, Chunfeng Li, Jingqi Wang, Xiaodong Guan. Effect of laparoscopic high ligation of internal spermatic vein with testicular artery preservation on infertility caused by varicocele[J]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(03): 261-264.
[10] Jie Yuan, Yuqi Qiao, Yandong Li. Efficacy of letrozole combined with metformin and dydrogesterone in treatment of polycystic ovarian syndrome with infertility[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(04): 343-347.
[11] Quan Wang, Yingmei Zhou, Ying He. Clinical significance of expression of p27 and cyclin E in endometriosis[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(06): 546-552.
[12] Min Teng, Ping HE, Guolan Huang, Jie Qin, Taishuai Huang. Effect of targeted differential nursing intervention on social status, cognitive status, and psychological flexibility in infertility patients[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(03): 268-273.
[13] Peng Du, Xiaoli Zhang, Xiaoyong Zhao. Effect of DNA methylation regulation on male infertility and its mechanism[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(01): 10-16.
[14] Yu Zhao, Jipeng Yang, Xiaoli Zhao, Qiang Geng, Bin Ouyang, Tian Xia. An exploration of the rules of acupoint selection and meridian circulation in the treatment of male infertility based on data mining technology[J]. Chinese Journal of Acupuncture and Moxibustion(Electronic Edition), 2023, 12(01): 32-36.
[15] Yu Zhang, Jie Miao. A review of the hysterosalpingography in the diagnosis of hydrosalpinx[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2023, 11(04): 336-340.
Viewed
Full text


Abstract