Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2023, Vol. 19 ›› Issue (03): 249 -255. doi: 10.3877/cma.j.issn.1673-5250.2023.03.001

Forum

Current research status of susceptibility genes and epigenetics on childhood asthma

Lili Lou, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Vascular Remodeling and Developmental Defects Research Unit of West China Institute of Women and Children′s Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2023-02-08 Revised:2023-05-01 Published:2023-06-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Special Funds for Basic Scientific Research Business Funds of Central Universities by National Health Commission(SCU2022D022)

Asthma is the most common chronic respiratory diseases in children, characterized by repeated cough, shortness of breath, wheezing, etc., which seriously affects children′s health, daily life and learning, and brings heavy disease and economic burden to families and society. With the advancement of genome-wide association studies (GWAS), great progresses have been made at the genetic level, and its pathogenesis has been better elaborated in asthma susceptibility genes and epigenetics, providing guidance for gene diagnosis and targeted therapy. The author intends to elaborate on the global incidence of childhood asthma, the latest research status of molecular phenotypes, susceptibility genes, and epigenetic modifications in children with asthma.

[1]
Global burden of chronic respiratory diseases and risk factors, 1990-2019: an update from the global burden of disease study 2019[J]. EC linical Med, 2023, 59: 101936. DOI: 10.1016/j.eclinm.2023.101936
[2]
全国儿科哮喘协作组,中国疾病预防控制中心环境与健康相关产品安全所. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志2013, 51(10): 729-35. DOI: 10.3760/cma.j.issn.0578-1310.2013.10.003.
[3]
Dijk FN, de Jongste JC, Postma DS, et al. Genetics of onset of asthma[J]. Curr Opin Allergy Clin Immunol, 2013, 13(2): 193-202. DOI: 10.1097/ACI.0b013e32835eb707.
[4]
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15. DOI: 10.1007/s00281-020-00785-1.
[5]
全国儿童哮喘防治协作组,陈再历,陈育智,等. 中国城区儿童哮喘患病率调查[J].中华儿科杂志2003, 41(2): 123-127. DOI: 10.3760/cma.j.issn.0578-1310.2003.02.116.
[6]
Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). Eur Respir J, 1996, 9(4): 687-95. DOI: 10.1183/09031936.96.09040687.
[7]
Ellwood P, Asher MI, Billo NE, et al. The Global Asthma Network rationale and methods for Phase Ⅰ global surveillance: prevalence, severity, management and risk factors[J]. Eur Respir J, 2017, 49(1). DOI: 10.1183/13993003.01605-2016.
[8]
von Mutius E, Smits HH. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention[J]. Lancet, 2020, 396(10254): 854-866. DOI: 10.1016/s0140-6736(20)31861-4.
[9]
Thomsen SF, Duffy DL, Kyvik KO, er al. Genetic influence on the age at onset of asthma: a twin study[J]. J Allergy Clin Immunol, 2010, 126(3): 626-630. DOI: 10.1016/j.jaci.2010.06.017.
[10]
Hizawa N, Yamaguchi E, Konno S, et al. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma[J]. Am J Respir Crit Care Med, 2002166(5): 686-690. DOI: 10.1164/rccm.200202-090OC.
[11]
Granell R, Curtin JA, Haider S, et al. A Meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing[J]. Elife, 2023, 12. DOI: 10.7554/eLife.84315.
[12]
Amelink M, de Groot JC, de Nijs SB, et al. Severe adult-onset asthma: a distinct phenotype[J]. J Allergy Clin Immunol, 2013, 132(2): 336-341. DOi: 10.1016/j.jaci.2013.04.052.
[13]
Walker C, Bode E, Boer L, et al. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage[J]. Am Rev Respir Dis, 1992, 146(1): 109-15. DOI: 10.1164/ajrccm/146.1.109.
[14]
杜文,刘春涛. 支气管哮喘的表型[J].中华临床免疫和变态反应杂志2022, 16(3): 287-91. DOI: 10.3969/j.issn.1673-8705.2022.03.011.
[15]
Wang F, He XY, Baines KJ, et al. Different inflammatory phenotypes in adults and children with acute asthma[J]. Eur Respir J, 2011, 38(3): 567-574. DOI: 10.1183/09031936.00170110.
[16]
Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids[J]. Proc Natl Acad Sci U S A, 2007, 104(40): 15858-15863. DOI: 10.1073/pnas.0707413104.
[17]
Maison N, Omony J, Illi S, et al. T2-high asthma phenotypes across lifespan[J]. Eur Respir J, 2022, 60(3). DOI: 10.1183/13993003.02288-2021.
[18]
Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation[J]. Nature, 2015, 526(7571): 68-74. DOI: 10.1038/nature15393.
[19]
Mammen JR, Arcoleo K. Understanding the genetics of asthma and implications for clinical practice[J]. J Am Assoc Nurse Pract, 2019, 31(7): 384-387. DOI: 10.1097/jxx.0000000000000246.
[20]
Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma[J]. Nature, 2007, 448(7152): 470-473. DOI: 10.1038/nature06014.
[21]
Zhuang LL, Huang BX, Feng J, et al. All-trans retinoic acid modulates ORMDL3 expression via transcriptional regulation[J]. PLoS One, 2013, 8(10): e77304. DOI: 10.1371/journal.pone.0077304.
[22]
Yu X, Yu C, Ren Z, et al. Genetic variants of 17q21 are associated with childhood-onset asthma and related phenotypes in a northeastern Han Chinese population: a case-control study[J]. Tissue Antigens, 2014, 83(5): 330-336. DOI: 10.1111/tan.12342.
[23]
Torgerson DG, Ampleford EJ, Chiu GY, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations[J]. Nat Genet, 2011, 43(9): 887-892. DOI: 10.1038/ng.888.
[24]
Li X, Christenson SA, Modena B, et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways[J]. J Allergy Clin Immunol, 2021, 147(3): 894-909. DOI: 10.1016/j.jaci.2020.07.030.
[25]
Al-Shami A, Spolski R, Kelly J, et al. A role for TSLP in the development of inflammation in an asthma model[J]. J Exp Med, 2005, 202(6): 829-39. DOI: 10.1084/jem.20050199.
[26]
Harada M, Hirota T, Jodo AI, et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells[J]. Am J Respir Cell Mol Biol, 2009, 40(3): 368-74. DOI: 10.1165/rcmb.2008-0041OC.
[27]
Demenais F, Margaritte-Jeannin P, Barnes KC, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks[J]. Nat Genet, 2018, 50(1): 42-53. DOI: 10.1038/s41588-017-0014-7.
[28]
Pividori M, Schoettler N, Nicolae DL, et al. Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies[J]. Lancet Respir Med, 2019, 7(6): 509-522. DOI: 10.1016/s2213-2600(19)30055-4.
[29]
DeVries A, Vercelli D. Epigenetic mechanisms in asthma[J]. Ann Am Thorac Soc, 2016, 13 Suppl 1(Suppl 1): S48- S50. DOI: 10.1513/AnnalsATS.201507-420MG.
[30]
Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advancements[J]. Curr Allergy Asthma Rep, 2012, 12(3): 211-220. DOI: 10.1007/s11882-012-0257-4.
[31]
Bae DJ, Jun JA, Chang HS, et al. Epigenetic changes in asthma: role of DNA CpG methylation[J]. Tuberc Respir Dis (Seoul), 2020, 83(1): 1-13. DOI: 10.4046/trd.2018.0088.
[32]
Hudon Thibeault AA, Laprise C. Cell-specific DNA methylation signatures in asthma. genes (Basel), 2019, 10(11): 932. DOI: 10.3390/genes10110932.
[33]
Forno E, Wang T, Qi C, et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study[J]. Lancet Respir Med, 2019, 7(4): 336-346. DOI: 10.1016/s2213-2600(18)30466-1.
[34]
Xu CJ, Söderhäll C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis[J]. Lancet Respir Med, 2018, 6(5): 379-388. DOI: 10.1016/s2213-2600(18)30052-3.
[35]
冯玲,刘毅,许玉竹,等. 甲基化修饰与支气管哮喘的研究进展[J].国际呼吸杂志202141(1): 58-62. DOI: 10.3760/cma.j.cn131368-20200602-00466.
[36]
Lin AH, Shang Y, Mitzner W, et al. Aberrant DNA methylation of phosphodiesterase[corrected]4D alters airway smooth muscle cell phenotypes[J]. Am J Respir Cell Mol Biol, 2016, 54(2): 241-249. DOI: 10.1165/rcmb.2015-0079OC.
[37]
Baccarelli A, Rusconi F, Bollati V, et al. Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma[J]. Epigenomics, 2012, 4(1): 91-100. DOI: 10.2217/epi.11.106.
[38]
Larouche M, Gagné-Ouellet V, Boucher-Lafleur AM, et al. Methylation profiles of IL33 and CCL26 in bronchial epithelial cells are associated with asthma[J]. Epigenomics, 2018, 10(12): 1555-1568. DOI: 10.2217/epi-2018-0044.
[39]
Alaskhar Alhamwe B, Khalaila R, Wolf J, et al. Histone modifications and their role in epigenetics of atopy and allergic diseases[J]. Allergy Asthma Clin Immunol, 2018, 14: 39. DOI: 10.1186/s13223-018-0259-4.
[40]
Brook PO, Perry MM, Adcock IM, et al. Epigenome-modifying tools in asthma[J]. Epigenomics, 2015, 7(6): 1017-1032. DOI: 10.2217/epi.15.53.
[41]
Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells[J]. Immunity, 2009, 30(1): 155-167. DOI: 10.1016/j.immuni.2008.12.009.
[42]
Grausenburger R, Bilic I, Boucheron N, et al. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production[J]. J Immunol, 2010, 185(6): 3489-3497. DOI: 10.4049/jimmunol.0903610.
[43]
Tian M, Zhou Y, Jia H, et al. The clinical significance of changes in the expression levels of microRNA-1 and inflammatory factors in the peripheral blood of children with acute-stage asthma[J]. Biomed Res Int, 2018, 2018: 7632487. DOI: 10.1155/2018/7632487.
[44]
Singh PB, Pua HH, Happ HC, et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation[J]. J Exp Med, 2017, 214(12): 3627-3643. DOI: 10.1084/jem.20170545.
[45]
Svitich OA, Sobolev VV, Gankovskaya LV, et al. The role of regulatory RNAs (miRNAs) in asthma[J]. Allergol Immunopathol (Madr), 2018, 46(2): 201-205. DOI: 10.1016/j.aller.2017.09.015.
[46]
Elbehidy RM, Youssef DM, El-Shal AS, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children[J]. Mol Immunol, 2016, 71: 107-114. DOI: 10.1016/j.molimm.2015.12.015.
[1] Jiu Wang, Jun Chen, Xia Zhu, Yangjin Mima, Sheng Zhao, Xinlin Chen, Jianhua Li, Shuang Wang. Effect of implementing fetal systemic ultrasound screening in Material and Child Health Hospital of Shannan[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(07): 728-733.
[2] Jun Zhang, Chongru Zhao, Qiang Liu. New progress in immunotherapy for triple negative breast cancer in 2021[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(03): 133-137.
[3] Minrong Ma, Cong Li, Qin Zhou. Current research status of treatment of cervical cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 497-504.
[4] Changsheng Lin, Jun Zhan, Xue Xiao. Genetic testing and precision molecular targeted therapy in diagnosis and treatment of epithelial ovarian caner[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 505-510.
[5] Lu Wang, Yang Fan. Advances in endometrial cancer-related biomarker research[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 511-516.
[6] Haoyuan Yang, Jie Gong, Qingwei Zou, Hang Ruan. Current research status on adverse pregnancy outcomes of maternal and infant in pregnant women with asthma[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 522-529.
[7] Jun Wang, Zhenqiang Zhang, Xiyi Wang, Xingqing Gou, Yuping He. Analysis of influencing factors on results of embryo preimplantation genetic testing for chromosome structural rearrangement in chromosomal reciprocal translocation carriers[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 652-659.
[8] Xiaofang Zhang, Ping Wang. Research progress on diagnosis and therapy for vaginal melanoma[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 621-626.
[9] Jinli Yan, Dapeng Chen. Research progress on probiotics in clinical application of neonatal respiratory diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 517-522.
[10] Pei Qian, Ying Bao, Huimei Huang, Yan Han, Lei Suo, Nan Yang, Xiaomin An, Jiawen Dang. Clinical phenotypes and genotypes analysis of PKHD1 gene variants in children with autosomal recessive polycystic kidney disease[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 540-547.
[11] Lichao Fan, Jinying Guo, Xin Chen. The significance of detection of wild-type RET and RET/PTC fusion gene for lymph node dissection in the central region of papillary thyroid carcinoma[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(06): 631-635.
[12] Yujie Xu, Guodong Zhao. Advances and challenges in the treatment of advanced gastric cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(04): 451-455.
[13] Lingfang Tan, Kebing Zhou. Identification of biomarkers associated with diagnosis of bronchial asthma based on integrated bioinformatics analysis[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(03): 329-334.
[14] Xiaoyong Wei. Discussion on the focus issues of conversion therapy for primary liver cancer[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(06): 602-607.
[15] Jingen Xia, Shiyu Hu. Application scenario of extracorporeal carbon dioxide removal technology in Intensive Care Unit[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 40-45.
Viewed
Full text


Abstract