Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2023, Vol. 19 ›› Issue (03): 249 -255. doi: 10.3877/cma.j.issn.1673-5250.2023.03.001

Forum

Current research status of susceptibility genes and epigenetics on childhood asthma

Lili Lou, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Vascular Remodeling and Developmental Defects Research Unit of West China Institute of Women and Children′s Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2023-02-08 Revised:2023-05-01 Published:2023-06-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Special Funds for Basic Scientific Research Business Funds of Central Universities by National Health Commission(SCU2022D022)

Asthma is the most common chronic respiratory diseases in children, characterized by repeated cough, shortness of breath, wheezing, etc., which seriously affects children′s health, daily life and learning, and brings heavy disease and economic burden to families and society. With the advancement of genome-wide association studies (GWAS), great progresses have been made at the genetic level, and its pathogenesis has been better elaborated in asthma susceptibility genes and epigenetics, providing guidance for gene diagnosis and targeted therapy. The author intends to elaborate on the global incidence of childhood asthma, the latest research status of molecular phenotypes, susceptibility genes, and epigenetic modifications in children with asthma.

[1]
Global burden of chronic respiratory diseases and risk factors, 1990-2019: an update from the global burden of disease study 2019[J]. EC linical Med, 2023, 59: 101936. DOI: 10.1016/j.eclinm.2023.101936
[2]
全国儿科哮喘协作组,中国疾病预防控制中心环境与健康相关产品安全所. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志2013, 51(10): 729-35. DOI: 10.3760/cma.j.issn.0578-1310.2013.10.003.
[3]
Dijk FN, de Jongste JC, Postma DS, et al. Genetics of onset of asthma[J]. Curr Opin Allergy Clin Immunol, 2013, 13(2): 193-202. DOI: 10.1097/ACI.0b013e32835eb707.
[4]
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15. DOI: 10.1007/s00281-020-00785-1.
[5]
全国儿童哮喘防治协作组,陈再历,陈育智,等. 中国城区儿童哮喘患病率调查[J].中华儿科杂志2003, 41(2): 123-127. DOI: 10.3760/cma.j.issn.0578-1310.2003.02.116.
[6]
Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). Eur Respir J, 1996, 9(4): 687-95. DOI: 10.1183/09031936.96.09040687.
[7]
Ellwood P, Asher MI, Billo NE, et al. The Global Asthma Network rationale and methods for Phase Ⅰ global surveillance: prevalence, severity, management and risk factors[J]. Eur Respir J, 2017, 49(1). DOI: 10.1183/13993003.01605-2016.
[8]
von Mutius E, Smits HH. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention[J]. Lancet, 2020, 396(10254): 854-866. DOI: 10.1016/s0140-6736(20)31861-4.
[9]
Thomsen SF, Duffy DL, Kyvik KO, er al. Genetic influence on the age at onset of asthma: a twin study[J]. J Allergy Clin Immunol, 2010, 126(3): 626-630. DOI: 10.1016/j.jaci.2010.06.017.
[10]
Hizawa N, Yamaguchi E, Konno S, et al. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma[J]. Am J Respir Crit Care Med, 2002166(5): 686-690. DOI: 10.1164/rccm.200202-090OC.
[11]
Granell R, Curtin JA, Haider S, et al. A Meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing[J]. Elife, 2023, 12. DOI: 10.7554/eLife.84315.
[12]
Amelink M, de Groot JC, de Nijs SB, et al. Severe adult-onset asthma: a distinct phenotype[J]. J Allergy Clin Immunol, 2013, 132(2): 336-341. DOi: 10.1016/j.jaci.2013.04.052.
[13]
Walker C, Bode E, Boer L, et al. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage[J]. Am Rev Respir Dis, 1992, 146(1): 109-15. DOI: 10.1164/ajrccm/146.1.109.
[14]
杜文,刘春涛. 支气管哮喘的表型[J].中华临床免疫和变态反应杂志2022, 16(3): 287-91. DOI: 10.3969/j.issn.1673-8705.2022.03.011.
[15]
Wang F, He XY, Baines KJ, et al. Different inflammatory phenotypes in adults and children with acute asthma[J]. Eur Respir J, 2011, 38(3): 567-574. DOI: 10.1183/09031936.00170110.
[16]
Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids[J]. Proc Natl Acad Sci U S A, 2007, 104(40): 15858-15863. DOI: 10.1073/pnas.0707413104.
[17]
Maison N, Omony J, Illi S, et al. T2-high asthma phenotypes across lifespan[J]. Eur Respir J, 2022, 60(3). DOI: 10.1183/13993003.02288-2021.
[18]
Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation[J]. Nature, 2015, 526(7571): 68-74. DOI: 10.1038/nature15393.
[19]
Mammen JR, Arcoleo K. Understanding the genetics of asthma and implications for clinical practice[J]. J Am Assoc Nurse Pract, 2019, 31(7): 384-387. DOI: 10.1097/jxx.0000000000000246.
[20]
Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma[J]. Nature, 2007, 448(7152): 470-473. DOI: 10.1038/nature06014.
[21]
Zhuang LL, Huang BX, Feng J, et al. All-trans retinoic acid modulates ORMDL3 expression via transcriptional regulation[J]. PLoS One, 2013, 8(10): e77304. DOI: 10.1371/journal.pone.0077304.
[22]
Yu X, Yu C, Ren Z, et al. Genetic variants of 17q21 are associated with childhood-onset asthma and related phenotypes in a northeastern Han Chinese population: a case-control study[J]. Tissue Antigens, 2014, 83(5): 330-336. DOI: 10.1111/tan.12342.
[23]
Torgerson DG, Ampleford EJ, Chiu GY, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations[J]. Nat Genet, 2011, 43(9): 887-892. DOI: 10.1038/ng.888.
[24]
Li X, Christenson SA, Modena B, et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways[J]. J Allergy Clin Immunol, 2021, 147(3): 894-909. DOI: 10.1016/j.jaci.2020.07.030.
[25]
Al-Shami A, Spolski R, Kelly J, et al. A role for TSLP in the development of inflammation in an asthma model[J]. J Exp Med, 2005, 202(6): 829-39. DOI: 10.1084/jem.20050199.
[26]
Harada M, Hirota T, Jodo AI, et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells[J]. Am J Respir Cell Mol Biol, 2009, 40(3): 368-74. DOI: 10.1165/rcmb.2008-0041OC.
[27]
Demenais F, Margaritte-Jeannin P, Barnes KC, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks[J]. Nat Genet, 2018, 50(1): 42-53. DOI: 10.1038/s41588-017-0014-7.
[28]
Pividori M, Schoettler N, Nicolae DL, et al. Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies[J]. Lancet Respir Med, 2019, 7(6): 509-522. DOI: 10.1016/s2213-2600(19)30055-4.
[29]
DeVries A, Vercelli D. Epigenetic mechanisms in asthma[J]. Ann Am Thorac Soc, 2016, 13 Suppl 1(Suppl 1): S48- S50. DOI: 10.1513/AnnalsATS.201507-420MG.
[30]
Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advancements[J]. Curr Allergy Asthma Rep, 2012, 12(3): 211-220. DOI: 10.1007/s11882-012-0257-4.
[31]
Bae DJ, Jun JA, Chang HS, et al. Epigenetic changes in asthma: role of DNA CpG methylation[J]. Tuberc Respir Dis (Seoul), 2020, 83(1): 1-13. DOI: 10.4046/trd.2018.0088.
[32]
Hudon Thibeault AA, Laprise C. Cell-specific DNA methylation signatures in asthma. genes (Basel), 2019, 10(11): 932. DOI: 10.3390/genes10110932.
[33]
Forno E, Wang T, Qi C, et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study[J]. Lancet Respir Med, 2019, 7(4): 336-346. DOI: 10.1016/s2213-2600(18)30466-1.
[34]
Xu CJ, Söderhäll C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis[J]. Lancet Respir Med, 2018, 6(5): 379-388. DOI: 10.1016/s2213-2600(18)30052-3.
[35]
冯玲,刘毅,许玉竹,等. 甲基化修饰与支气管哮喘的研究进展[J].国际呼吸杂志202141(1): 58-62. DOI: 10.3760/cma.j.cn131368-20200602-00466.
[36]
Lin AH, Shang Y, Mitzner W, et al. Aberrant DNA methylation of phosphodiesterase[corrected]4D alters airway smooth muscle cell phenotypes[J]. Am J Respir Cell Mol Biol, 2016, 54(2): 241-249. DOI: 10.1165/rcmb.2015-0079OC.
[37]
Baccarelli A, Rusconi F, Bollati V, et al. Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma[J]. Epigenomics, 2012, 4(1): 91-100. DOI: 10.2217/epi.11.106.
[38]
Larouche M, Gagné-Ouellet V, Boucher-Lafleur AM, et al. Methylation profiles of IL33 and CCL26 in bronchial epithelial cells are associated with asthma[J]. Epigenomics, 2018, 10(12): 1555-1568. DOI: 10.2217/epi-2018-0044.
[39]
Alaskhar Alhamwe B, Khalaila R, Wolf J, et al. Histone modifications and their role in epigenetics of atopy and allergic diseases[J]. Allergy Asthma Clin Immunol, 2018, 14: 39. DOI: 10.1186/s13223-018-0259-4.
[40]
Brook PO, Perry MM, Adcock IM, et al. Epigenome-modifying tools in asthma[J]. Epigenomics, 2015, 7(6): 1017-1032. DOI: 10.2217/epi.15.53.
[41]
Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells[J]. Immunity, 2009, 30(1): 155-167. DOI: 10.1016/j.immuni.2008.12.009.
[42]
Grausenburger R, Bilic I, Boucheron N, et al. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production[J]. J Immunol, 2010, 185(6): 3489-3497. DOI: 10.4049/jimmunol.0903610.
[43]
Tian M, Zhou Y, Jia H, et al. The clinical significance of changes in the expression levels of microRNA-1 and inflammatory factors in the peripheral blood of children with acute-stage asthma[J]. Biomed Res Int, 2018, 2018: 7632487. DOI: 10.1155/2018/7632487.
[44]
Singh PB, Pua HH, Happ HC, et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation[J]. J Exp Med, 2017, 214(12): 3627-3643. DOI: 10.1084/jem.20170545.
[45]
Svitich OA, Sobolev VV, Gankovskaya LV, et al. The role of regulatory RNAs (miRNAs) in asthma[J]. Allergol Immunopathol (Madr), 2018, 46(2): 201-205. DOI: 10.1016/j.aller.2017.09.015.
[46]
Elbehidy RM, Youssef DM, El-Shal AS, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children[J]. Mol Immunol, 2016, 71: 107-114. DOI: 10.1016/j.molimm.2015.12.015.
[1] Jiu Wang, Jun Chen, Xia Zhu, Yangjin Mima, Sheng Zhao, Xinlin Chen, Jianhua Li, Shuang Wang. Effect of implementing fetal systemic ultrasound screening in Material and Child Health Hospital of Shannan[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(07): 728-733.
[2] Qin Liu, Hanmin Liu, Liang Xie. Current status of research on the role of matrix metalloproteinases in the pathogenesis of childhood asthma[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 564-568.
[3] Qingzhuo Gao, Yifan Kang, Zhihong Wang. Current research status of clinical studies on monopronuclear embryos in in vitro fertilization cycles[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 260-265.
[4] Li Wang, Lei Cao, Yadan Wang, Wei Zhang. Krabbe disease: a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 339-345.
[5] Qing Liu, Zhiling Wang. Gut mycobiome and pediatric inflammatory bowel disease[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(02): 172-178.
[6] Chen Feng, Ying Zheng, Tong Wu, Jing Li, Mindi Xia, Juanjuan Lu, Yujie Dang. Analysis of assisted pregnancy outcomes of ring chromosome carriers[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(01): 58-64.
[7] Yeqing Wang, Litong Li, Weixu Li, Meng Cao. The causal association between periodontitis and diabetic retinopathy: A bidirectional two-sample mendelian randomization analysis[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(03): 160-168.
[8] Huanhuan Wang, Shaoxiang Zheng, Jinjin Hao, Wenliang Chen. Advances and correlation in molecular classification of gastric cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2024, 18(03): 229-234.
[9] Jing Bao, Xia Wu, Yaping Tian, Gang Yin. Effects of vitamin D3 combined with Montelukast sodium on serum VEGF, TGF-β1 and lung function in patients with bronchial asthma[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(01): 63-67.
[10] Haonan Li, Yupeng Zhang, Yan Fu, Jiwei Feng, Kai Liu, Wenkai Zhang. Advances in the study of Connexin 43 in lung diseases[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(01): 60-65.
[11] Chenghui Zhang, Zhongrui Yan, Zhiqiang Sheng, Yanran Yuan. Research advances in the diagnosis and treatment of the cerebral creatine deficiency syndrome[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(04): 270-275.
[12] Chao Zhao, Di Shi, Nuan Wang, Guofang Chen. A case of Kennedy disease complicated with serum antibody-negative myasthenia gravis[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(04): 236-240.
[13] Yongna Feng, Jian Ye. The value of exhaled nitric oxide detection in the diagnosis of asthma-chronic obstructive pulmonary diseases overlap in the elderly[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2024, 11(01): 30-34.
[14] Shuqin Hu, Hongyan Xu, Dan Cao, Yayan Ding. Application of cloud platform video nursing in children with severe asthma and its influence on[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2024, 10(04): 218-223.
[15] Zekai Zhou, Baoyin Liu, Yuntao Nie, Hua Meng. Research progress in the effects of obesity on lung function[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2024, 10(01): 58-65.
Viewed
Full text


Abstract