[1] |
Global burden of chronic respiratory diseases and risk factors, 1990-2019: an update from the global burden of disease study 2019[J]. EC linical Med, 2023, 59: 101936. DOI: 10.1016/j.eclinm.2023.101936
|
[2] |
|
[3] |
Dijk FN, de Jongste JC, Postma DS, et al. Genetics of onset of asthma[J]. Curr Opin Allergy Clin Immunol, 2013, 13(2): 193-202. DOI: 10.1097/ACI.0b013e32835eb707.
|
[4] |
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15. DOI: 10.1007/s00281-020-00785-1.
|
[5] |
|
[6] |
Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). Eur Respir J, 1996, 9(4): 687-95. DOI: 10.1183/09031936.96.09040687.
|
[7] |
Ellwood P, Asher MI, Billo NE, et al. The Global Asthma Network rationale and methods for Phase Ⅰ global surveillance: prevalence, severity, management and risk factors[J]. Eur Respir J, 2017, 49(1). DOI: 10.1183/13993003.01605-2016.
|
[8] |
von Mutius E, Smits HH. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention[J]. Lancet, 2020, 396(10254): 854-866. DOI: 10.1016/s0140-6736(20)31861-4.
|
[9] |
Thomsen SF, Duffy DL, Kyvik KO, er al. Genetic influence on the age at onset of asthma: a twin study[J]. J Allergy Clin Immunol, 2010, 126(3): 626-630. DOI: 10.1016/j.jaci.2010.06.017.
|
[10] |
Hizawa N, Yamaguchi E, Konno S, et al. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma[J]. Am J Respir Crit Care Med, 2002, 166(5): 686-690. DOI: 10.1164/rccm.200202-090OC.
|
[11] |
Granell R, Curtin JA, Haider S, et al. A Meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing[J]. Elife, 2023, 12. DOI: 10.7554/eLife.84315.
|
[12] |
Amelink M, de Groot JC, de Nijs SB, et al. Severe adult-onset asthma: a distinct phenotype[J]. J Allergy Clin Immunol, 2013, 132(2): 336-341. DOi: 10.1016/j.jaci.2013.04.052.
|
[13] |
Walker C, Bode E, Boer L, et al. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage[J]. Am Rev Respir Dis, 1992, 146(1): 109-15. DOI: 10.1164/ajrccm/146.1.109.
|
[14] |
|
[15] |
Wang F, He XY, Baines KJ, et al. Different inflammatory phenotypes in adults and children with acute asthma[J]. Eur Respir J, 2011, 38(3): 567-574. DOI: 10.1183/09031936.00170110.
|
[16] |
Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids[J]. Proc Natl Acad Sci U S A, 2007, 104(40): 15858-15863. DOI: 10.1073/pnas.0707413104.
|
[17] |
Maison N, Omony J, Illi S, et al. T2-high asthma phenotypes across lifespan[J]. Eur Respir J, 2022, 60(3). DOI: 10.1183/13993003.02288-2021.
|
[18] |
Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation[J]. Nature, 2015, 526(7571): 68-74. DOI: 10.1038/nature15393.
|
[19] |
Mammen JR, Arcoleo K. Understanding the genetics of asthma and implications for clinical practice[J]. J Am Assoc Nurse Pract, 2019, 31(7): 384-387. DOI: 10.1097/jxx.0000000000000246.
|
[20] |
Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma[J]. Nature, 2007, 448(7152): 470-473. DOI: 10.1038/nature06014.
|
[21] |
Zhuang LL, Huang BX, Feng J, et al. All-trans retinoic acid modulates ORMDL3 expression via transcriptional regulation[J]. PLoS One, 2013, 8(10): e77304. DOI: 10.1371/journal.pone.0077304.
|
[22] |
Yu X, Yu C, Ren Z, et al. Genetic variants of 17q21 are associated with childhood-onset asthma and related phenotypes in a northeastern Han Chinese population: a case-control study[J]. Tissue Antigens, 2014, 83(5): 330-336. DOI: 10.1111/tan.12342.
|
[23] |
Torgerson DG, Ampleford EJ, Chiu GY, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations[J]. Nat Genet, 2011, 43(9): 887-892. DOI: 10.1038/ng.888.
|
[24] |
Li X, Christenson SA, Modena B, et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways[J]. J Allergy Clin Immunol, 2021, 147(3): 894-909. DOI: 10.1016/j.jaci.2020.07.030.
|
[25] |
Al-Shami A, Spolski R, Kelly J, et al. A role for TSLP in the development of inflammation in an asthma model[J]. J Exp Med, 2005, 202(6): 829-39. DOI: 10.1084/jem.20050199.
|
[26] |
Harada M, Hirota T, Jodo AI, et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells[J]. Am J Respir Cell Mol Biol, 2009, 40(3): 368-74. DOI: 10.1165/rcmb.2008-0041OC.
|
[27] |
Demenais F, Margaritte-Jeannin P, Barnes KC, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks[J]. Nat Genet, 2018, 50(1): 42-53. DOI: 10.1038/s41588-017-0014-7.
|
[28] |
Pividori M, Schoettler N, Nicolae DL, et al. Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies[J]. Lancet Respir Med, 2019, 7(6): 509-522. DOI: 10.1016/s2213-2600(19)30055-4.
|
[29] |
DeVries A, Vercelli D. Epigenetic mechanisms in asthma[J]. Ann Am Thorac Soc, 2016, 13 Suppl 1(Suppl 1): S48- S50. DOI: 10.1513/AnnalsATS.201507-420MG.
|
[30] |
Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advancements[J]. Curr Allergy Asthma Rep, 2012, 12(3): 211-220. DOI: 10.1007/s11882-012-0257-4.
|
[31] |
Bae DJ, Jun JA, Chang HS, et al. Epigenetic changes in asthma: role of DNA CpG methylation[J]. Tuberc Respir Dis (Seoul), 2020, 83(1): 1-13. DOI: 10.4046/trd.2018.0088.
|
[32] |
Hudon Thibeault AA, Laprise C. Cell-specific DNA methylation signatures in asthma. genes (Basel), 2019, 10(11): 932. DOI: 10.3390/genes10110932.
|
[33] |
Forno E, Wang T, Qi C, et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study[J]. Lancet Respir Med, 2019, 7(4): 336-346. DOI: 10.1016/s2213-2600(18)30466-1.
|
[34] |
Xu CJ, Söderhäll C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis[J]. Lancet Respir Med, 2018, 6(5): 379-388. DOI: 10.1016/s2213-2600(18)30052-3.
|
[35] |
|
[36] |
Lin AH, Shang Y, Mitzner W, et al. Aberrant DNA methylation of phosphodiesterase[corrected]4D alters airway smooth muscle cell phenotypes[J]. Am J Respir Cell Mol Biol, 2016, 54(2): 241-249. DOI: 10.1165/rcmb.2015-0079OC.
|
[37] |
Baccarelli A, Rusconi F, Bollati V, et al. Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma[J]. Epigenomics, 2012, 4(1): 91-100. DOI: 10.2217/epi.11.106.
|
[38] |
Larouche M, Gagné-Ouellet V, Boucher-Lafleur AM, et al. Methylation profiles of IL33 and CCL26 in bronchial epithelial cells are associated with asthma[J]. Epigenomics, 2018, 10(12): 1555-1568. DOI: 10.2217/epi-2018-0044.
|
[39] |
Alaskhar Alhamwe B, Khalaila R, Wolf J, et al. Histone modifications and their role in epigenetics of atopy and allergic diseases[J]. Allergy Asthma Clin Immunol, 2018, 14: 39. DOI: 10.1186/s13223-018-0259-4.
|
[40] |
Brook PO, Perry MM, Adcock IM, et al. Epigenome-modifying tools in asthma[J]. Epigenomics, 2015, 7(6): 1017-1032. DOI: 10.2217/epi.15.53.
|
[41] |
Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4 + T cells[J]. Immunity, 2009, 30(1): 155-167. DOI: 10.1016/j.immuni.2008.12.009.
|
[42] |
Grausenburger R, Bilic I, Boucheron N, et al. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production[J]. J Immunol, 2010, 185(6): 3489-3497. DOI: 10.4049/jimmunol.0903610.
|
[43] |
Tian M, Zhou Y, Jia H, et al. The clinical significance of changes in the expression levels of microRNA-1 and inflammatory factors in the peripheral blood of children with acute-stage asthma[J]. Biomed Res Int, 2018, 2018: 7632487. DOI: 10.1155/2018/7632487.
|
[44] |
Singh PB, Pua HH, Happ HC, et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation[J]. J Exp Med, 2017, 214(12): 3627-3643. DOI: 10.1084/jem.20170545.
|
[45] |
Svitich OA, Sobolev VV, Gankovskaya LV, et al. The role of regulatory RNAs (miRNAs) in asthma[J]. Allergol Immunopathol (Madr), 2018, 46(2): 201-205. DOI: 10.1016/j.aller.2017.09.015.
|
[46] |
Elbehidy RM, Youssef DM, El-Shal AS, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children[J]. Mol Immunol, 2016, 71: 107-114. DOI: 10.1016/j.molimm.2015.12.015.
|