Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (04): 410 -419. doi: 10.3877/cma.j.issn.1673-5250.2021.04.006

Original Article

Analysis of non-invasive prenatal screening in 50 975 pregnant women in Guangxi region

Yaqin Lei, Yunli Lai, Shang Yi, Fuben Xu, Yanqing Tang, Xiaoshan Huang, Jian Yi, Xiaoxia Qiu()   

  • Received:2020-12-28 Revised:2021-06-11 Published:2021-08-01
  • Corresponding author: Xiaoxia Qiu
  • Supported by:
    Research Program of Health Department of Guangxi Zhuang Autonomous Region(Z20200601); Guangxi Special Fund for Scientific Base and Talent(GKAD17129016)
Objective

To investigate the clinical performance of non-invasive prenatal testing (NIPS) in the detection of chromosome aneuploidies and genome-wide copy number variation (CNV).

Methods

A total of 50 975 serum specimens from singleton pregnant women who received NIPS at the Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region from January 2018 to December 2019 were selected into this study. Based on different risk factors, they were divided into 3 groups. Those with serologic screening results of high risk + elderly pregnant women + adverse maternal history/family history were included in high-risk group (n=22 852), those with moderate risk/critical risk of serologic screening and abnormal ultrasound soft indicators were included in moderate-risk group (n=4 584), and those without the above risk factors were included in low-risk group (n=23 539). For those with high risk of NIPS detection, chromosome karyotype analysis and chromosome microarray analysis (CMA) were used for interventional prenatal diagnosis. The study protocol was approved by the Ethics Review Committee of Guangxi Maternal and Child Health Hospital (approval No.[2020]9-2).

Results

① Of 50 975 pregnant women who underwent NIPS, 702 cases showed high risk, with a total positive rate of 1.38%. Among them, the high risk of 21-, 18-and 13-trisomy was 175 cases (0.34%), 67 cases (0.13%) and 63 cases (0.12%), respectively, the high risk of sex chromosome aneuploidy abnormalities (SCA) was 205 cases (0.40%), the high risk of rare chromosome number abnormality (RCA) was 96 (0.19%), and the high risk of copy number variation (CNV) was 96 (0.19%). ②A total of 555 of the 702 positive cases (79.06%) were followed up by karyotyping and (or) CMA, 93 (16.76%) refused confirmatory diagnosis, 42 (7.57%) did not perform prenatal diagnosis because of abortion or induced labor, and 12 (1.71%) lost follow-up. ③The positive predictive values for trisomy 21, trisomy 18, trisomy 13, SCA, RCA, and CNV were 85.09% (137/161), 57.14% (28/49), 16.67% (9/54), 42.31% (66/156), 5.56% (4/72), and 42.86% (27/63), respectively. ④In 16 cases with high risk of NIPS screening, NIPS was not detected by interventional prenatal diagnosis, but other abnormal results were detected. Of the 4 fetuses with high risk of trisomy 21, CNV was detected in 3 and complex structural variation of chromosome 21 was detected in 1. In one case of 18-trisomy high-risk fetus, the karyotype analysis results suggested that it was 21-trisomy. Among the 2 fetuses with 13-trisomy high risk, one was a chimera with chromosome structural variation, and the other was CNV. CNV of other chromosomes was detected in 3 fetuses with high SCA risk and 2 fetuses with high RCA risk. Among the 4 fetuses with high risk of CNV, 47, XYYY were detected in 1 case and other CNV abnormalities were detected in 3 cases.

Conclusions

NIPS has a high clinical value for screening common chromosomal aneuploidies such as 21-, 18-, and 13-trisomies. the positive predictive value of NIPS for screening SCA, RCA and CNV is low, but combined with prenatal ultrasound and other related examination, it can provide a basis for genetic counseling and further prenatal diagnosis.

表1 3组孕妇NIPS情况[例数(%)]
表2 NIPS高风险者进一步进行介入性产前诊断的检测结果
表3 16例胎儿NIPS与介入性产前诊断结果不一致
病例(No.) 年龄 孕龄 NIPS胎儿染色体核型异常 介入性产前诊断胎儿染色体核型异常 SNP芯片结果 片段大小(Mb) CNV致病性评估
1 36 16 21-三体高风险 未见数目和结构异常 arr[hg19]21q22.3(44585405-45722442)x3 1.14 临床意义不明
2 37 17+3 21-三体高风险 未见数目和结构异常 arr[hg19]7q11.23(72350815-74138121)x1 1.79 致病
3 35 15 21-三体高风险 未见数目和结构异常 arr[hg19]21q21.2(25114738-26305530)x3 1.19 临床意义不明
4 33 18 21-三体高风险 45,Xn,-21[11]/46,Xn,r(21)(p11q22)[183]/46,Xn,dic r(21;21)(p11q22;p11q22)[6] 未见染色体数目和结构异常 致病
5 38 18 18-三体高风险 47,XN,+21 未检测 整条 致病
6 30 18+3 13-三体高风险 45,XY,der(13,13)(q10,q10)[41]/45,XY,der(13,20)(q10,q10)[13]/46,XY[18] 未见染色体数目和结构异常 致病
7 26 20+5 13-三体高风险 未见数目和结构异常 arr[hg19]16p13.11(15239631-16289532)x3 1.05 可能致病
8 31 18 性染色体数目减少 未见数目和结构异常 arr[hg19]15q21.3(57080418-57495813)x1 0.42 可能致病
9 32 17+5 性染色体异常 未见数目和结构异常 arr[hg19]3q29(195738406-197409600)x1 1.67 致病
10 37 22+6 性染色体异常 46,X,Yqh- arr[hg19]1q21.1(145384225-145755813)x1 0.37 临床意义不明
11 30 17+4 3-三体高风险 未见数目和结构异常 arr[hg19]9q31.1(104939411-106639645)x1 1.70 临床意义不明
12 27 16+6 7-三体高风险 未见数目和结构异常 arr[hg19]2q13(110982530-113100014)x3 2.12 可能致病
13 35 16+5 11号染色体有重复 47,XYY 47,XYY 整条 致病
14 31 15 20号染色体有缺失 未见数目和结构异常 arr[hg19]8p23.1(9783789-10950866)x3 1.17 临床意义不明
15 24 17 16号染色体有重复 未见数目和结构异常 arr[hg19]22q11.21(21062271-21462353)x3 0.4 临床意义不明
16 27 17 16号染色体有重复 未见数目和结构异常 arr[hg19]21q21.1(19563036-20235268)x1 0.67 临床意义不明
[1]
Carmichael SL. Birth defects epidemiology[J]. Eur J Med Genet, 2014, 57(8): 355-358. DOI: 10.1016/j.ejmg.2014.03.002.
[2]
Benn P, Grati FR. Genome-wide non-invasive prenatal screening for all cytogenetically visible imbalances[J]. Ultrasound Obstet Gynecol, 2018, 51(4): 429-433. DOI: 10.1002/uog.19014.
[3]
Badeau M, Lindsay C, Blais J, et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women[J]. Cochrane Database Syst Rev, 2017, 11: CD011767. DOI: 10.1002/14651858.CD011767.pub2.
[4]
戚庆炜. 无创产前检测临床应用相关指南解读[J]. 发育医学电子杂志2019, 7(3):161-167. DOI: 10.3969/j.issn.2095-5340.2019.03.001.
[5]
Wan J, Li R, Zhang Y, et al. Pregnancy outcome of autosomal aneuploidies other than common trisomies detected by noninvasive prenatal testing in routine clinical practice[J]. Prenat Diagn, 2018, 38(11): 849-857. DOI: 10.1002/pd.5340.
[6]
欧珊,唐斌,刘天盛,等. 唐氏综合征筛查高危为产前诊断指征的羊水染色体核型分析[J].中华医学遗传学杂志201431(5): 669-671.DOI: 10.3760/cma.j.issn.1003-9406.2014.05.030.
[7]
Lau TK, Chen F, Pan X, et al. Noninvasive prenatal diagnosis of common fetal chromosomal aneuploidies by maternal plasma DNA sequencing[J]. J Matern Fetal Neonatal Med, 2012, 25(8): 1370-1374. DOI: 10.3109/14767058.2011.635730.
[8]
中国医师协会医学遗传学分会,中国医师协会青春期医学专业委员会临床遗传学组,中华医学会儿科学分会内分泌遗传代谢学组. 染色体基因组芯片在儿科遗传病的临床应用专家共识[J]. 中华儿科杂志201654(6): 410-413. DOI: 10.3760/cma.j.issn.0578-1310.2016.06.004
[9]
染色体微阵列分析技术在产前诊断中的应用协作组. 染色体微阵列分析技术在产前诊断中的应用专家共识[J]. 中华妇产科杂志2014, 49(8):570-572. DOI: 10.3760/cma.j.issn.0529-567x.2014.08.002.
[10]
Kearney HM, Thorland EC, Brown KK, et al. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants[J]. Genet Med, 2011, 13(7): 680-685. DOI: 10.1097/GIM.0b013e3182217a3a.
[11]
Vanneste E, Voet T, Le Caignec C, et al. Chromosome instability is common in human cleavage-stage embryos[J]. Nat Med, 2009, 15(5): 577-583. DOI: 10.1038/nm.1924.
[12]
Garcia-Herrero S, Cervero A, Mateu E, et al. Genetic analysis of human preimplantation embryos[J]. Curr Top Dev Biol, 2016, 120: 421-447. DOI: 10.1016/bs.ctdb.2016.04.009.
[13]
Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis[J]. N Engl J Med, 2012, 367(23): 2175-2184. DOI: 10.1056/NEJMoa1203382.
[14]
赵晓曦,武艾宁,于荣鑫,等. 内蒙古自治区无创产前基因检测高危孕妇的染色体异常状况分析[J/CD]. 中华妇幼临床医学杂志(电子版), 2018, 14(2):224-229. DOI: 10.3877/cma.j.issn.1673-5250.2018.02.016.
[15]
Iwarsson E, Jacobsson B, Dagerhamn J, et al. Analysis of cell-free fetal DNA in maternal blood for detection of trisomy 21, 18 and 13 in a general pregnant population and in a high risk population - a systematic review and Meta-analysis[J]. Acta Obstet Gynecol Scand, 2017, 96(1): 7-18. DOI: 10.1111/aogs.13047.
[16]
Xue Y, Zhao G, Li H, et al. Non-invasive prenatal testing to detect chromosome aneuploidies in 57,204 pregnancies[J]. Mol Cytogenet, 2019, 12: 29. DOI: 10.1186/s13039-019-0441-5.
[17]
Petersen AK, Cheung SW, Smith JL, et al. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory[J]. Am J Obstet Gynecol, 2017, 217(6): 691. e1-691.e6. DOI: 10.1016/j.ajog.2017.10.005.
[18]
Mardy A, Wapner RJ. Confined placental mosaicism and its impact on confirmation of NIPS results[J]. Am J Med Genet C Semin Med Genet, 2016, 172(2): 118-122. DOI: 10.1002/ajmg.c.31505.
[19]
罗丽双,孟繁杰,张宁,等. 5 756例孕妇外周血胎儿游离DNA无创产前筛查结果分析[J]. 国际生殖健康/计划生育杂志2018, 37(2):103-106. DOI: 10.3969/j.issn.1674-1889.2018.02.004.
[20]
郭颖,常颖. 嵌合体形成及其对产前筛查及诊断结果的影响[J]. 国际妇产科学杂志2018, 45(1):14-18. DOI: 10.3969/j.issn.1674-1870.2018.01.003.
[21]
Wang Y, Chen Y, Tian F, et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing[J]. Clin Chem, 2014, 60(1): 251-259. DOI: 10.1373/clinchem.2013.215145.
[22]
Pieters JJ, Kooper AJ, van Kessel AG, et al. Incidental prenatal diagnosis of sex chromosome aneuploidies: health, behavior, and fertility[J]. ISRN Obstet Gynecol, 2011, 2011: 807106. DOI: 10.5402/2011/807106.
[23]
Pertile MD, Halks-Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease[J]. Sci Transl Med, 2017, 9(405): eaan1240. DOI: 10.1126/scitranslmed.aan1240.
[24]
柯玮琳,赵卫华,揭深秋,等. 无创产前DNA检测次要结果中基因组拷贝数变异的临床意义[J]. 中华医学遗传学杂志2017, 34(3):327-331. DOI: 10.3760/cma.j.issn.1003-9406.2017.03.003.
[25]
Chen S, Zhang L, Gao J, et al. Expanding the scope of non-invasive prenatal testing to detect fetal chromosomal copy number variations[J]. Front Mol Biosci, 2021, 8: 649169. DOI: 10.3389/fmolb.2021.649169.
[26]
Liang D, Cram DS, Tan H, et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes[J]. Genet Med, 2019, 21(9): 1998-2006. DOI: 10.1038/s41436-019-0467-4.
[27]
张彦春,刘凯波,张雯,等. 中孕期血清学筛查联合无创产前检测在唐氏综合征产前筛查与诊断中的应用 [J/CD]. 中华妇幼临床医学杂志(电子版), 2020, 16(6): 709-713. DOI: 10.3877/cma.j.issn.1673-5250.2020.06.013.
[28]
索峰,张燕,王亿,等. 无创产前检测技术筛查胎儿性染色体非整倍体的临床价值 [J/CD]. 中华妇幼临床医学杂志(电子版), 2020, 16(5): 584-589. DOI: 10.3877/cma.j.issn.1673-5250.2020.05.012.
[29]
苏杭,刘之英,赖怡,等. 高龄孕妇产前诊断结果及其首选无创产前筛查局限性的大样本分析 [J/CD]. 中华妇幼临床医学杂志(电子版)201814 (6): 718-723. DOI: 10.3877/cma.j.issn.1673-5250.2018.06.015.
[30]
蔡奥捷,朱朝锋,薛淑文,等. 无创产前筛查对胎儿染色体非整倍体检出的临床价值探讨 [J]. 中华妇产科杂志201752 (11): 765-769. DOI: 10.3760/cma.j.issn.0529-567X.2017.11.009.
[31]
Van Opstal D, van Veen S, Joosten M, et al. Placental studies elucidate discrepancies between NIPS showing a structural chromosome aberration and a differently abnormal fetal karyotype[J]. Prenat Diagn, 2019, 39(11): 1016-1025. DOI: 10.1002/pd.5531.
[32]
常家祯,周希亚,戚庆炜,等.无创产前检测意外发现的产前诊断结果分析[J]. 发育医学电子杂志2020, 8(3): 220-226.
[1] Shuihua Yang, Guidan He, Guican Qin, Mengfeng Liang, Yanhe Luo, Xueqin Li, Juansong Tang. Echocardioimagedata characteristics of fetal isolated total anomalous pulmonary venous connection and application of high definition flow imaging and spatio-temporal image correlation[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(10): 1061-1067.
[2] Lei Liu, Xin Yang, Xiaohua Xu, Shengmou Lin, Chuqin Xiong, Lilu Nong, Zhenyu Dong, Shengli Li. Measurement of fetal prenasal thickness and nasal bone length as a screening tool for trisomy 21, 18, and 13 in the second trimester of pregancy[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(05): 506-510.
[3] Tiantian Chen, Xiaodong Wang, Haiyan Yu. Pregnancy outcome of twin pregnancy with Gitelman syndrome: a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 559-568.
[4] Xiaoqing Ju, Yunjie Jin, Xiaoyan Wang. Influencing factors of uterine rupture during vaginal delivery in patients with scarred uterus after cesarean section[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 575-581.
[5] Beibei Wang, Qixiu Dong, Hongyan Xi, Qingyun Yu, Lijun Zhang, Guang Shi. Analysis of influencing factors of medical abortion failure of pregnant women in early pregnancy and construction of related prediction model and its predictive value for medical abortion success[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 588-594.
[6] Xu Chen, Yuru Zhan, Chunhua Wang. Clinical value of ABO blood group combined with thyroid function in prediction of gestational diabetes mellitus[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 604-610.
[7] Mengling Zhou, Zhiwei Xue, Shu Zhou. Changes in size of uterine myoma during pregnancy and its association with adverse pregnancy outcomes[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 611-615.
[8] Chao Xue, Ye Zhang, Ying Zhao, Jiancheng Han, Xiaoyan Gu, Lin Sun, Xiaowei Liu, Wei Song, Yihua He. Ultrasonographic characteristics and prognosis of fetal congenital absent pulmonary valve syndrome[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 410-418.
[9] Chenxi Ran, Rufei Shen, Mingyu Liao, Qian Liao, Ling Zhou, Yuling Zhang, Min Long. Treatment and management of pituitary tumor during pregnancy[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 487-491.
[10] Ying Chen, Yanli Chen. Causes of heart rate variability and perinatal outcomes in elderly pregnant women[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(03): 295-301.
[11] Danyan Feng, Xiaohui Cao, Yuxia Shi. Effect of serum adiponectin and placental leucine aminopeptidase levels on pregnancy outcome in pregnant women with gestational diabetes mellitus[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(03): 302-308.
[12] Defeng Kuang, Zhiguo Li, Shaofang Hua, Fengxia Xue. Levels and significance of fatty acid-binding protein 4 in serum and placental tissues and related lipid protein expression of high-fat-induced pregnant rats[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(03): 338-344.
[13] Wen Zhang, Yanchun Zhang, Kaibo Liu, Hongyan Xu. Prenatal MRI diagnosis and perinatal outcome of fetal congenital hydrocephalus in Beijing[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(03): 345-349.
[14] Longhai Wu, Miao Huang, Yunhui Gong, Yunqian Yu. Clinical value of serum chemokines in pregnant women with gestational diabetes mellitus[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(03): 357-362.
[15] Xueyun Liu, Ying Fan, Aijun Yao, Shengmiao Zhang, Yani Lv, Bingqing Zhang, Xiaoyu Zhang, Heng. Liu. Effects of individualized whole-course nursing intervention based on WeChat mini program on pregnancy weight and delivery outcome[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(04): 455-460.
Viewed
Full text


Abstract