Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (04): 410 -419. doi: 10.3877/cma.j.issn.1673-5250.2021.04.006

Original Article

Analysis of non-invasive prenatal screening in 50 975 pregnant women in Guangxi region

Yaqin Lei, Yunli Lai, Shang Yi, Fuben Xu, Yanqing Tang, Xiaoshan Huang, Jian Yi, Xiaoxia Qiu()   

  • Received:2020-12-28 Revised:2021-06-11 Published:2021-08-01
  • Corresponding author: Xiaoxia Qiu
  • Supported by:
    Research Program of Health Department of Guangxi Zhuang Autonomous Region(Z20200601); Guangxi Special Fund for Scientific Base and Talent(GKAD17129016)
Objective

To investigate the clinical performance of non-invasive prenatal testing (NIPS) in the detection of chromosome aneuploidies and genome-wide copy number variation (CNV).

Methods

A total of 50 975 serum specimens from singleton pregnant women who received NIPS at the Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region from January 2018 to December 2019 were selected into this study. Based on different risk factors, they were divided into 3 groups. Those with serologic screening results of high risk + elderly pregnant women + adverse maternal history/family history were included in high-risk group (n=22 852), those with moderate risk/critical risk of serologic screening and abnormal ultrasound soft indicators were included in moderate-risk group (n=4 584), and those without the above risk factors were included in low-risk group (n=23 539). For those with high risk of NIPS detection, chromosome karyotype analysis and chromosome microarray analysis (CMA) were used for interventional prenatal diagnosis. The study protocol was approved by the Ethics Review Committee of Guangxi Maternal and Child Health Hospital (approval No.[2020]9-2).

Results

① Of 50 975 pregnant women who underwent NIPS, 702 cases showed high risk, with a total positive rate of 1.38%. Among them, the high risk of 21-, 18-and 13-trisomy was 175 cases (0.34%), 67 cases (0.13%) and 63 cases (0.12%), respectively, the high risk of sex chromosome aneuploidy abnormalities (SCA) was 205 cases (0.40%), the high risk of rare chromosome number abnormality (RCA) was 96 (0.19%), and the high risk of copy number variation (CNV) was 96 (0.19%). ②A total of 555 of the 702 positive cases (79.06%) were followed up by karyotyping and (or) CMA, 93 (16.76%) refused confirmatory diagnosis, 42 (7.57%) did not perform prenatal diagnosis because of abortion or induced labor, and 12 (1.71%) lost follow-up. ③The positive predictive values for trisomy 21, trisomy 18, trisomy 13, SCA, RCA, and CNV were 85.09% (137/161), 57.14% (28/49), 16.67% (9/54), 42.31% (66/156), 5.56% (4/72), and 42.86% (27/63), respectively. ④In 16 cases with high risk of NIPS screening, NIPS was not detected by interventional prenatal diagnosis, but other abnormal results were detected. Of the 4 fetuses with high risk of trisomy 21, CNV was detected in 3 and complex structural variation of chromosome 21 was detected in 1. In one case of 18-trisomy high-risk fetus, the karyotype analysis results suggested that it was 21-trisomy. Among the 2 fetuses with 13-trisomy high risk, one was a chimera with chromosome structural variation, and the other was CNV. CNV of other chromosomes was detected in 3 fetuses with high SCA risk and 2 fetuses with high RCA risk. Among the 4 fetuses with high risk of CNV, 47, XYYY were detected in 1 case and other CNV abnormalities were detected in 3 cases.

Conclusions

NIPS has a high clinical value for screening common chromosomal aneuploidies such as 21-, 18-, and 13-trisomies. the positive predictive value of NIPS for screening SCA, RCA and CNV is low, but combined with prenatal ultrasound and other related examination, it can provide a basis for genetic counseling and further prenatal diagnosis.

表1 3组孕妇NIPS情况[例数(%)]
表2 NIPS高风险者进一步进行介入性产前诊断的检测结果
表3 16例胎儿NIPS与介入性产前诊断结果不一致
病例(No.) 年龄 孕龄 NIPS胎儿染色体核型异常 介入性产前诊断胎儿染色体核型异常 SNP芯片结果 片段大小(Mb) CNV致病性评估
1 36 16 21-三体高风险 未见数目和结构异常 arr[hg19]21q22.3(44585405-45722442)x3 1.14 临床意义不明
2 37 17+3 21-三体高风险 未见数目和结构异常 arr[hg19]7q11.23(72350815-74138121)x1 1.79 致病
3 35 15 21-三体高风险 未见数目和结构异常 arr[hg19]21q21.2(25114738-26305530)x3 1.19 临床意义不明
4 33 18 21-三体高风险 45,Xn,-21[11]/46,Xn,r(21)(p11q22)[183]/46,Xn,dic r(21;21)(p11q22;p11q22)[6] 未见染色体数目和结构异常 致病
5 38 18 18-三体高风险 47,XN,+21 未检测 整条 致病
6 30 18+3 13-三体高风险 45,XY,der(13,13)(q10,q10)[41]/45,XY,der(13,20)(q10,q10)[13]/46,XY[18] 未见染色体数目和结构异常 致病
7 26 20+5 13-三体高风险 未见数目和结构异常 arr[hg19]16p13.11(15239631-16289532)x3 1.05 可能致病
8 31 18 性染色体数目减少 未见数目和结构异常 arr[hg19]15q21.3(57080418-57495813)x1 0.42 可能致病
9 32 17+5 性染色体异常 未见数目和结构异常 arr[hg19]3q29(195738406-197409600)x1 1.67 致病
10 37 22+6 性染色体异常 46,X,Yqh- arr[hg19]1q21.1(145384225-145755813)x1 0.37 临床意义不明
11 30 17+4 3-三体高风险 未见数目和结构异常 arr[hg19]9q31.1(104939411-106639645)x1 1.70 临床意义不明
12 27 16+6 7-三体高风险 未见数目和结构异常 arr[hg19]2q13(110982530-113100014)x3 2.12 可能致病
13 35 16+5 11号染色体有重复 47,XYY 47,XYY 整条 致病
14 31 15 20号染色体有缺失 未见数目和结构异常 arr[hg19]8p23.1(9783789-10950866)x3 1.17 临床意义不明
15 24 17 16号染色体有重复 未见数目和结构异常 arr[hg19]22q11.21(21062271-21462353)x3 0.4 临床意义不明
16 27 17 16号染色体有重复 未见数目和结构异常 arr[hg19]21q21.1(19563036-20235268)x1 0.67 临床意义不明
[1]
Carmichael SL. Birth defects epidemiology[J]. Eur J Med Genet, 2014, 57(8): 355-358. DOI: 10.1016/j.ejmg.2014.03.002.
[2]
Benn P, Grati FR. Genome-wide non-invasive prenatal screening for all cytogenetically visible imbalances[J]. Ultrasound Obstet Gynecol, 2018, 51(4): 429-433. DOI: 10.1002/uog.19014.
[3]
Badeau M, Lindsay C, Blais J, et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women[J]. Cochrane Database Syst Rev, 2017, 11: CD011767. DOI: 10.1002/14651858.CD011767.pub2.
[4]
戚庆炜. 无创产前检测临床应用相关指南解读[J]. 发育医学电子杂志2019, 7(3):161-167. DOI: 10.3969/j.issn.2095-5340.2019.03.001.
[5]
Wan J, Li R, Zhang Y, et al. Pregnancy outcome of autosomal aneuploidies other than common trisomies detected by noninvasive prenatal testing in routine clinical practice[J]. Prenat Diagn, 2018, 38(11): 849-857. DOI: 10.1002/pd.5340.
[6]
欧珊,唐斌,刘天盛,等. 唐氏综合征筛查高危为产前诊断指征的羊水染色体核型分析[J].中华医学遗传学杂志201431(5): 669-671.DOI: 10.3760/cma.j.issn.1003-9406.2014.05.030.
[7]
Lau TK, Chen F, Pan X, et al. Noninvasive prenatal diagnosis of common fetal chromosomal aneuploidies by maternal plasma DNA sequencing[J]. J Matern Fetal Neonatal Med, 2012, 25(8): 1370-1374. DOI: 10.3109/14767058.2011.635730.
[8]
中国医师协会医学遗传学分会,中国医师协会青春期医学专业委员会临床遗传学组,中华医学会儿科学分会内分泌遗传代谢学组. 染色体基因组芯片在儿科遗传病的临床应用专家共识[J]. 中华儿科杂志201654(6): 410-413. DOI: 10.3760/cma.j.issn.0578-1310.2016.06.004
[9]
染色体微阵列分析技术在产前诊断中的应用协作组. 染色体微阵列分析技术在产前诊断中的应用专家共识[J]. 中华妇产科杂志2014, 49(8):570-572. DOI: 10.3760/cma.j.issn.0529-567x.2014.08.002.
[10]
Kearney HM, Thorland EC, Brown KK, et al. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants[J]. Genet Med, 2011, 13(7): 680-685. DOI: 10.1097/GIM.0b013e3182217a3a.
[11]
Vanneste E, Voet T, Le Caignec C, et al. Chromosome instability is common in human cleavage-stage embryos[J]. Nat Med, 2009, 15(5): 577-583. DOI: 10.1038/nm.1924.
[12]
Garcia-Herrero S, Cervero A, Mateu E, et al. Genetic analysis of human preimplantation embryos[J]. Curr Top Dev Biol, 2016, 120: 421-447. DOI: 10.1016/bs.ctdb.2016.04.009.
[13]
Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis[J]. N Engl J Med, 2012, 367(23): 2175-2184. DOI: 10.1056/NEJMoa1203382.
[14]
赵晓曦,武艾宁,于荣鑫,等. 内蒙古自治区无创产前基因检测高危孕妇的染色体异常状况分析[J/CD]. 中华妇幼临床医学杂志(电子版), 2018, 14(2):224-229. DOI: 10.3877/cma.j.issn.1673-5250.2018.02.016.
[15]
Iwarsson E, Jacobsson B, Dagerhamn J, et al. Analysis of cell-free fetal DNA in maternal blood for detection of trisomy 21, 18 and 13 in a general pregnant population and in a high risk population - a systematic review and Meta-analysis[J]. Acta Obstet Gynecol Scand, 2017, 96(1): 7-18. DOI: 10.1111/aogs.13047.
[16]
Xue Y, Zhao G, Li H, et al. Non-invasive prenatal testing to detect chromosome aneuploidies in 57,204 pregnancies[J]. Mol Cytogenet, 2019, 12: 29. DOI: 10.1186/s13039-019-0441-5.
[17]
Petersen AK, Cheung SW, Smith JL, et al. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory[J]. Am J Obstet Gynecol, 2017, 217(6): 691. e1-691.e6. DOI: 10.1016/j.ajog.2017.10.005.
[18]
Mardy A, Wapner RJ. Confined placental mosaicism and its impact on confirmation of NIPS results[J]. Am J Med Genet C Semin Med Genet, 2016, 172(2): 118-122. DOI: 10.1002/ajmg.c.31505.
[19]
罗丽双,孟繁杰,张宁,等. 5 756例孕妇外周血胎儿游离DNA无创产前筛查结果分析[J]. 国际生殖健康/计划生育杂志2018, 37(2):103-106. DOI: 10.3969/j.issn.1674-1889.2018.02.004.
[20]
郭颖,常颖. 嵌合体形成及其对产前筛查及诊断结果的影响[J]. 国际妇产科学杂志2018, 45(1):14-18. DOI: 10.3969/j.issn.1674-1870.2018.01.003.
[21]
Wang Y, Chen Y, Tian F, et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing[J]. Clin Chem, 2014, 60(1): 251-259. DOI: 10.1373/clinchem.2013.215145.
[22]
Pieters JJ, Kooper AJ, van Kessel AG, et al. Incidental prenatal diagnosis of sex chromosome aneuploidies: health, behavior, and fertility[J]. ISRN Obstet Gynecol, 2011, 2011: 807106. DOI: 10.5402/2011/807106.
[23]
Pertile MD, Halks-Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease[J]. Sci Transl Med, 2017, 9(405): eaan1240. DOI: 10.1126/scitranslmed.aan1240.
[24]
柯玮琳,赵卫华,揭深秋,等. 无创产前DNA检测次要结果中基因组拷贝数变异的临床意义[J]. 中华医学遗传学杂志2017, 34(3):327-331. DOI: 10.3760/cma.j.issn.1003-9406.2017.03.003.
[25]
Chen S, Zhang L, Gao J, et al. Expanding the scope of non-invasive prenatal testing to detect fetal chromosomal copy number variations[J]. Front Mol Biosci, 2021, 8: 649169. DOI: 10.3389/fmolb.2021.649169.
[26]
Liang D, Cram DS, Tan H, et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes[J]. Genet Med, 2019, 21(9): 1998-2006. DOI: 10.1038/s41436-019-0467-4.
[27]
张彦春,刘凯波,张雯,等. 中孕期血清学筛查联合无创产前检测在唐氏综合征产前筛查与诊断中的应用 [J/CD]. 中华妇幼临床医学杂志(电子版), 2020, 16(6): 709-713. DOI: 10.3877/cma.j.issn.1673-5250.2020.06.013.
[28]
索峰,张燕,王亿,等. 无创产前检测技术筛查胎儿性染色体非整倍体的临床价值 [J/CD]. 中华妇幼临床医学杂志(电子版), 2020, 16(5): 584-589. DOI: 10.3877/cma.j.issn.1673-5250.2020.05.012.
[29]
苏杭,刘之英,赖怡,等. 高龄孕妇产前诊断结果及其首选无创产前筛查局限性的大样本分析 [J/CD]. 中华妇幼临床医学杂志(电子版)201814 (6): 718-723. DOI: 10.3877/cma.j.issn.1673-5250.2018.06.015.
[30]
蔡奥捷,朱朝锋,薛淑文,等. 无创产前筛查对胎儿染色体非整倍体检出的临床价值探讨 [J]. 中华妇产科杂志201752 (11): 765-769. DOI: 10.3760/cma.j.issn.0529-567X.2017.11.009.
[31]
Van Opstal D, van Veen S, Joosten M, et al. Placental studies elucidate discrepancies between NIPS showing a structural chromosome aberration and a differently abnormal fetal karyotype[J]. Prenat Diagn, 2019, 39(11): 1016-1025. DOI: 10.1002/pd.5531.
[32]
常家祯,周希亚,戚庆炜,等.无创产前检测意外发现的产前诊断结果分析[J]. 发育医学电子杂志2020, 8(3): 220-226.
[1] Lili Gu, Fan Jiang. Survey and analysis of quality of screening prenatal ultrasound images in Anhui Province[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(07): 671-674.
[2] Yan Xu, Tong Ru, Mingming Zheng, Yan Gu, Xiangyu Zhu, Chenchen Yan, Ling Chen, Chenyan Dai. Prenatal ultrasound and MRI characteristics and genetic analysis of Miller-Dieker syndrome[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(03): 281-287.
[3] Jingyu Qian, Mingming Zheng. Interpretation of the Italian guidelines on non-invasive and invasive prenatal diagnosis:executive summary of recommendations for practice the Italian Society for Obstetrics and Gynecology(SIGO)[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 486-492.
[4] Xialin Li, Fang He. Risk assessment and early warning system for postpartum hemorrhage[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 498-503.
[5] Ziyang Liu, Jianjian Cui, Yin Zhao. Current research status on obstetric disseminated intravascular coagulation and its scoring system[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 511-518.
[6] Fanying Zeng, Jie Ruan, Xinghui Liu, Guolin He. Current status of perinatal medicine advances under the new reproductive situation and coping strategies in prenatal care[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 519-524.
[7] Xiaofei Li, Hongli Liu, Qiuling Shi, Jing Tian, Li Li, Hongbo Qi, Xin Luo. A prospective randomized controlled study of low intensity focused ultrasound uterine involution treatment for prevention and treatment of postpartum hemorrhage in natural childbirth women[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 534-539.
[8] Rong Huang, Ziyu Liang, Wenjin Qi. Expression and significance of NLRP3 inflammasome in serum of pregnant women with premature rupture of membranes[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 540-548.
[9] Xia He, Rong Huang, Wenjin Qi. High-throughput sequencing study on the abundance of placenta and fetal membrane flora in pregnant women with premature rupture of membranes[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 549-555.
[10] Jiangyan Xie, Yafei Wang, Fang He. Pregnancy complicated with thrombotic thrombocytopenic purpura:two cases report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 556-563.
[11] Tingting Xu, Yongchi Zhan, Xiaodong Wang, Xiaodong Wang. Perinatal outcomes of fetomaternal hemorrhage syndrome pregnant women with sinusoidal fetal heart tracing[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(04): 382-389.
[12] Xiaoyan Han, Hua Yang. Relationship between low level of serum placental growth factor in the second trimester pregnancy women and adverse fetal prognosis[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(04): 398-402.
[13] Jiali Du, Rui Bao, Chunhong Qiao, Wei Han. Construction of a prediction model for adverse pregnancy outcomes after emergency cervical cerclage in pregnant women with cervical incompetence during the second trimester[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(04): 403-409.
[14] Juan Tan, Jianxin Tan, Binbin Shao, Yan Wang, Zhengfeng Xu. Current research status on non-invasive prenatal testing for fetal with single gene inheritance diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 245-250.
[15] Xiaorong Peng, Wei Mo, Qin Li, Yaqin Wu, Lan Li. Knowledge, attitude and practice of venous thromboembolism prevention and influencing factors among pregnant women[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(03): 274-280.
Viewed
Full text


Abstract