Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2024, Vol. 20 ›› Issue (03): 245 -250. doi: 10.3877/cma.j.issn.1673-5250.2024.03.001

Special Column of Reproductive Medicine

Current research status on non-invasive prenatal testing for fetal with single gene inheritance diseases

Juan Tan1, Jianxin Tan2, Binbin Shao2, Yan Wang2, Zhengfeng Xu2,()   

  1. 1. Prenatal Diagnosis Center, Women′s Hospital of Nanjing Medical University (Nanjing Women and Children′s Healthcare Hospital), Nanjing 210004, Jiangsu Province, China; Department of Medical Genetics and Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang 222006, Jiangsu Province, China
    2. Prenatal Diagnosis Center, Women′s Hospital of Nanjing Medical University (Nanjing Women and Children′s Healthcare Hospital), Nanjing 210004, Jiangsu Province, China
  • Received:2024-01-30 Revised:2024-04-30 Published:2024-06-01
  • Corresponding author: Zhengfeng Xu
  • Supported by:
    National Key Research and Development Program of China(2022YFC2703400); Lianyungang Health Technology Project(202126)

Single gene inheritance disease also known as monogenic inheritance, is one of the main causes of birth defects in newborns. The vast majority single gene inheritance diseases still lack effective treatment methods up to now, and cause a huge burden on society and families of children with gene inheritance diseases. Therefore, prenatal screening and diagnosis of fetal with single gene inheritance diseases are very important. At present, non-invasive prenatal testing (NIPT), as a new technology for detecting fetal with single gene inheritance diseases, has attracted increasing attention in the field of prenatal diagnosis due to its advantages of sampling safety, convenience, and non-invasive early pregnancy detection. The authors intended to elaborate on the latest research status of the technical methods, application prospects, and clinical challenges of NIPT for fetal with single gene inheritance diseases.

[1]
Salomon LJ, Sotiriadis A, Wulff CB, et al. Risk of miscarriage following amniocentesis or chorionic villus sampling: systematic review of literature and updated Meta-analysis[J]. Ultrasound Obstet Gynecol, 2019, 54(4): 442-451. DOI: 10.1002/uog.20353.
[2]
Saito H, Sekizawa A, Morimoto T, et al. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma[J]. Lancet, 2000, 356(9236): 1170. DOI: 10.1016/S0140-6736(00)02767-7.
[3]
Hanson B, Scotchman E, Chitty LS, et al. Non-invasive prenatal diagnosis (NIPD): how analysis of cell-free DNA in maternal plasma has changed prenatal diagnosis for monogenic disorders[J]. Clin Sci (Lond), 2022136(22): 1615-1629. DOI: 10.1042/CS20210380.
[4]
Chitty LS, Khalil A, Barrett AN, et al. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA[J]. Prenat Diagn, 2013, 33(5): 416-423. DOI: 10.1002/pd.4066.
[5]
Chiu RW, Lau TK, Cheung PT, et al. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study[J]. Clin Chem, 2002, 48(5): 778-780.
[6]
Scotchman E, Shaw J, Paternoster B, et al. Non-invasive prenatal diagnosis and screening for monogenic disorders[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 253: 320-327. DOI: 10.1016/j.ejogrb.
[7]
Young E, Bowns B, Gerrish A, et al. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders[J]. J Mol Diagn, 2020, 22(9): 1151-1161. DOI: 10.1016/j.jmoldx.
[8]
Chen C, Sun J, Yang Y, et al. Noninvasive prenatal diagnosis of hemophilia A by a haplotype-based approach using cell-free fetal DNA[J]. Biotechniques, 2020, 68(3): 117-121. DOI: 10.2144/btn-2019-0113.
[9]
New MI, Tong YK, Yuen T, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma[J]. J Clin Endocrinol Metab, 2014, 99(6): E1022- E1030. DOI: 10.1210/jc.2014-1118.
[10]
Young E, Bowns B, Gerrish A, et al. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders[J]. J Mol Diagn, 2020, 22(9): 1151-1161. DOI: 10.1016/j.jmoldx.2020.06.001.
[11]
Yang S, Zhao Q, Tang L, et al. Whole genome assembly of human papillomavirus by nanopore long-read sequencing[J]. Front Genet, 2022, 12: 798608. DOI: 10.3389/fgene.2021.798608.
[12]
Barrett AN, McDonnell TC, Chan KC, et al. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia[J]. Clin Chem, 2012, 58(6): 1026-1032. DOI: 10.1373/clinchem.2011.178939.
[13]
Sawakwongpra K, Tangmansakulchai K, Ngonsawan W, et al. Droplet-based digital PCR for non-invasive prenatal genetic diagnosis of α and β-thalassemia[J]. Biomed Rep, 2021, 15(4): 82. DOI: 10.3892/br.2021.1458.
[14]
Constantinou CG, Karitzi E, Byrou S, et al. Optimized droplet digital pcr assay on cell-free DNA samples for non-invasive prenatal diagnosis: application to beta-thalassemia[J]. Clin Chem, 2022, 68(8): 1053-1063. DOI: 10.1093/clinchem/hvac076.
[15]
D′Aversa E, Breveglieri G, Boutou E, et al. Droplet digital PCR for non-invasive prenatal detection of fetal single-gene point mutations in maternal plasma[J]. Int J Mol Sci, 2022, 23(5): 2819. DOI: 10.3390/ijms23052819.
[16]
Lv W, Wei X, Guo R, et al. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and re-sequencing technology (cSMART)[J]. Clin Chem, 2015, 61(1): 172-181. DOI: 10.1373/clinchem.2014.229328.
[17]
Lv W, Linpeng S, Li Z, et al. Noninvasive prenatal diagnosis for pregnancies at risk for β-thalassaemia: a retrospective study[J]. BJOG, 2021, 128(2): 448-457. DOI: 10.1111/1471-0528.16295.
[18]
Lv W, Liang L, Chen X, et al. Noninvasive prenatal testing of methylmalonic acidemia cblC type using the cSMART assay for MMACHC gene mutations[J]. Front Genet, 2022, 12: 750719. DOI: 10.3389/fgene.2021.750719.
[19]
Peng D, Ganye Z, Gege S, et al. Clinical application of non-invasive prenatal diagnosis of phenylketonuria based on haplotypes via paired-end molecular tags and weighting algorithm[J]. BMC Med Genom, 2021, 14(1): 294. DOI: 10.1186/s12920-021-01141-4.
[20]
Rabinowitz T, Polsky A, Golan D, et al. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders[J]. Genome Res, 2019, 29(3): 428-438. DOI: 10.1101/gr.235796.118.
[21]
Pin-Jung C, Pai-Chi T, Zhu Y, et al. Noninvasive prenatal diagnostics: recent developments using circulating fetal nucleated cells[J]. Curr Obstet Gynecol Rep, 2019, 8(1): 1-8.
[22]
Sabbatinelli G, Fantasia D, Palka C, et al. Isolation and enrichment of circulating fetal cells for NIPD: an overview[J]. Diagnostics (Basel), 2021, 11(12): 2239. DOI: 10.3390/diagnostics11122239.
[23]
Chen Y, Wu Z, Sutlive J, et al. Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells[J]. J Nanobiotechnology, 2022, 20(1): 546. DOI: 10.1186/s12951-022-01749-3.
[24]
Toft CLF, Ingerslev HJ, Kesmodel US, et al. Cell-based non-invasive prenatal testing for monogenic disorders: confirmation of unaffected fetuses following preimplantation genetic testing[J]. J Assist Reprod Genet, 2021, 38(8): 1959-1970. DOI: 10.1007/s10815-021-02104-5.
[25]
Yu SCY, Jiang P, Peng W, et al. Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma[J]. Proc Natl Acad Sci USA, 2021, 118(50): e2114937118. DOI: 10.1073/pnas.2114937118.
[26]
Vossaert L, Chakchouk I, Zemet R, et al. Overview and recent developments in cell-based noninvasive prenatal testing[J]. Prenat Diagn, 2021, 41(10): 1202-1214. DOI: 10.1002/pd.5957.
[27]
Hill M, Twiss P, Verhoef TI, et al. Non-invasive prenatal diagnosis for cystic fibrosis: detection of paternal mutations, exploration of patient preferences and cost analysis[J]. Prenat Diagn, 2015, 35(10): 950-958. DOI: 10.1002/pd.4585.
[28]
Xu C, Cai X, Chen S, et al. Comprehensive non-invasive prenatal screening for pregnancies with elevated risks of genetic disorders: protocol for a prospective, multicentre study[J]. BMJ Open, 2021, 11(8): e053617. DOI: 10.1136/bmjopen-2021-053617.
[29]
Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders[J]. Ultrasound Obstet Gynecol, 2022, 59(1): 33-39. DOI: 10.1002/uog.23756.
[30]
Hui L, Bianchi DW. Fetal fraction and noninvasive prenatal testing: what clinicians need to know[J]. Prenat Diagn, 2020, 40(2): 155-163. DOI: 10.1002/pd.5620.
[31]
Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements[J]. Crit Rev Clin Lab Sci, 2020, 57(7): 484-507. DOI: 10.1080/10408363.2020.1750558.
[32]
刘玉兰,陈雅莉,肖小华,等. 基于电驱动在线快速分离富集技术的研究进展[J]. 色谱2020, 38(10): 1197-1205. DOI: 10.3724/SP.J.1123.2020.07026.
[33]
Alyafee Y, Al Tuwaijri A, Umair M, et al. Non-invasive prenatal testing for autosomal recessive disorders: a new promising approach[J]. Front Genet, 2022, 13: 1047474. DOI: 10.3389/fgene.2022.1047474.
[34]
何珮清,刘佳楠,刘彦慧. 胎儿游离DNA在单基因遗传病检测的研究进展[J]. 中华医学遗传学杂志2022, 39(8) : 809-813. DOI: 10.3760/cma.j.cn511374-20210506-00386.
[35]
Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders[J]. Ultrasound Obstet Gynecol, 2022, 59(1): 33-39. DOI: 10.1002/uog.23756.
[36]
Verhoef TI, Hill M, Drury S, et al. Non-invasive prenatal diagnosis (NIPD) for single gene disorders: cost analysis of NIPD and invasive testing pathways[J]. Prenat Diagn, 2016, 36(7): 636-642. DOI: 10.1002/pd.4832.
[37]
Riku S, Hedriana H, Carozza JA, et al. Reflex single-gene non-invasive prenatal testing is associated with markedly better detection of fetuses affected with single-gene recessive disorders at lower cost[J]. J Med Econ, 2022, 25(1): 403-411. DOI: 10.1080/13696998.2022.2053384.
[38]
Huster S. Non-invasive prenatal diagnostics (NIPD) in the system of medical care. Ethical and legal issues[J]. J Perinat Med, 2021, 49(8): 972-978. DOI: 10.1515/jpm-2021-0195.
[39]
Kim NK. A normative review on non-invasive prenatal diagnosis (NIPD): focusing on the German discussion on PrenaTest®[J]. Dev Reprod, 2021, 25(2): 113-121. DOI: 10.12717/DR.2021.25.2.113.
[1] Yunyun Ren. Value of first trimester ultrasound scanning in the era of non-invasive prenatal testing[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(09): 873-876.
[2] Xuanyao Liu, Xiaoxi Zhao. Predictive value of single and combined detection of common prenatal screening indexes for pregnant women on fetal chromosomal abnormalities[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 657-664.
[3] Hexuan Zhang, Yonggang Song, Xue Yang. Results of non-invasive prenatal testing to pregnant women: a large sample analysis[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 685-691.
[4] Feng Suo, Yan Zhang, Yi Wang, Peng Wang, Yuan Fang, Man Zhang, Na Wang, Chuanxia Wang, Maosheng Gu, Lingshan Gou. Application value of non-invasive prenatal testing for fetal sex chromosome aneuploidy[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(05): 584-589.
[5] Huiying Shu, Qing Zhang, Hui Li, Qingti Tan, Mei Wang, Xiaojing Li, Min Zhou. Gene mutation analysis of glucose-6-phosphate dehydrogenase deficiency[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2018, 14(03): 291-295.
[6] Fang Sun, Jun Wang, Zhaoning Sun, Hongchuan Yu, Tingting Yang, Xinrong Sun. Application of metagenomics next generation sequencing of bronchoalveolar lavage fluid in children with severe pneumonia[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2024, 18(01): 27-34.
[7] Dan Feng, Erlie Jiang. Progress of invasive pulmonary aspergillosis in patients with hematological diseases[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2022, 16(03): 145-149.
[8] Yushi Peng, Yun Miao, Ziyan Yan. Clonorchis sinensis infection after renal transplantation diagnosed by metagenomic next generation sequencing: a case report[J]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(05): 297-299.
[9] Branch of Organ Transplantation of Chinese Medical Association, National Kidney Transplantation Quality Control Center. Technical specification for clinical diagnosis and treatment of human parvovirus B19 infection in kidney transplant recipients (2022 edition)[J]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(04): 193-200.
[10] Teng Ren, Wei Liu, Jiao Jiao, Yanyan Li, Ruina Ma, Yanfeng Fang, Faguang Jin. Analysis of clinical characteristics of Pneumocystis pneumonia[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(04): 473-476.
[11] Xiang Yang, Haibo Qiu. Some thoughts on metagenomics next-generation sequencing technology for early anti-infection targeted therapy of severe infections[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(04): 289-290.
[12] Bin Du. Next generation sequencing and etiological diagnosis of severe infections: the road ahead is long and has no ending[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(03): 193-195.
[13] Jiekun Pu, Mingjuan Chu, Qianqian Pang, Zhihua Zhang, Heming Zhang, Jianhua Tang. Antimicrobial drug resistance of carbapenem-resistant Pseudomonas aeruginosa and its mechanisms in Zhangjiakou, China[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(12): 1291-1296.
[14] Yun Bao, Yanqun Xiao, Hualiang Wang. Application and quality management of high-throughput sequencing in clinical molecular diagnosis of five kinds of diseases[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2018, 06(02): 69-73.
[15] Tingxiu Zhang, Sheng Hu, Lijie Ma, Zhenliang Xiao. Characteristics analysis of pulmonary abscess caused by Prevotella infection[J]. Chinese Journal of Diagnostics(Electronic Edition), 2022, 10(04): 234-237.
Viewed
Full text


Abstract