[1] |
Salomon LJ, Sotiriadis A, Wulff CB, et al. Risk of miscarriage following amniocentesis or chorionic villus sampling: systematic review of literature and updated Meta-analysis[J]. Ultrasound Obstet Gynecol, 2019, 54(4): 442-451. DOI: 10.1002/uog.20353.
|
[2] |
Saito H, Sekizawa A, Morimoto T, et al. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma[J]. Lancet, 2000, 356(9236): 1170. DOI: 10.1016/S0140-6736(00)02767-7.
|
[3] |
Hanson B, Scotchman E, Chitty LS, et al. Non-invasive prenatal diagnosis (NIPD): how analysis of cell-free DNA in maternal plasma has changed prenatal diagnosis for monogenic disorders[J]. Clin Sci (Lond), 2022, 136(22): 1615-1629. DOI: 10.1042/CS20210380.
|
[4] |
Chitty LS, Khalil A, Barrett AN, et al. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA[J]. Prenat Diagn, 2013, 33(5): 416-423. DOI: 10.1002/pd.4066.
|
[5] |
Chiu RW, Lau TK, Cheung PT, et al. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study[J]. Clin Chem, 2002, 48(5): 778-780.
|
[6] |
Scotchman E, Shaw J, Paternoster B, et al. Non-invasive prenatal diagnosis and screening for monogenic disorders[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 253: 320-327. DOI: 10.1016/j.ejogrb.
|
[7] |
Young E, Bowns B, Gerrish A, et al. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders[J]. J Mol Diagn, 2020, 22(9): 1151-1161. DOI: 10.1016/j.jmoldx.
|
[8] |
Chen C, Sun J, Yang Y, et al. Noninvasive prenatal diagnosis of hemophilia A by a haplotype-based approach using cell-free fetal DNA[J]. Biotechniques, 2020, 68(3): 117-121. DOI: 10.2144/btn-2019-0113.
|
[9] |
New MI, Tong YK, Yuen T, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma[J]. J Clin Endocrinol Metab, 2014, 99(6): E1022- E1030. DOI: 10.1210/jc.2014-1118.
|
[10] |
Young E, Bowns B, Gerrish A, et al. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders[J]. J Mol Diagn, 2020, 22(9): 1151-1161. DOI: 10.1016/j.jmoldx.2020.06.001.
|
[11] |
Yang S, Zhao Q, Tang L, et al. Whole genome assembly of human papillomavirus by nanopore long-read sequencing[J]. Front Genet, 2022, 12: 798608. DOI: 10.3389/fgene.2021.798608.
|
[12] |
Barrett AN, McDonnell TC, Chan KC, et al. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia[J]. Clin Chem, 2012, 58(6): 1026-1032. DOI: 10.1373/clinchem.2011.178939.
|
[13] |
Sawakwongpra K, Tangmansakulchai K, Ngonsawan W, et al. Droplet-based digital PCR for non-invasive prenatal genetic diagnosis of α and β-thalassemia[J]. Biomed Rep, 2021, 15(4): 82. DOI: 10.3892/br.2021.1458.
|
[14] |
Constantinou CG, Karitzi E, Byrou S, et al. Optimized droplet digital pcr assay on cell-free DNA samples for non-invasive prenatal diagnosis: application to beta-thalassemia[J]. Clin Chem, 2022, 68(8): 1053-1063. DOI: 10.1093/clinchem/hvac076.
|
[15] |
D′Aversa E, Breveglieri G, Boutou E, et al. Droplet digital PCR for non-invasive prenatal detection of fetal single-gene point mutations in maternal plasma[J]. Int J Mol Sci, 2022, 23(5): 2819. DOI: 10.3390/ijms23052819.
|
[16] |
Lv W, Wei X, Guo R, et al. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and re-sequencing technology (cSMART)[J]. Clin Chem, 2015, 61(1): 172-181. DOI: 10.1373/clinchem.2014.229328.
|
[17] |
Lv W, Linpeng S, Li Z, et al. Noninvasive prenatal diagnosis for pregnancies at risk for β-thalassaemia: a retrospective study[J]. BJOG, 2021, 128(2): 448-457. DOI: 10.1111/1471-0528.16295.
|
[18] |
Lv W, Liang L, Chen X, et al. Noninvasive prenatal testing of methylmalonic acidemia cblC type using the cSMART assay for MMACHC gene mutations[J]. Front Genet, 2022, 12: 750719. DOI: 10.3389/fgene.2021.750719.
|
[19] |
Peng D, Ganye Z, Gege S, et al. Clinical application of non-invasive prenatal diagnosis of phenylketonuria based on haplotypes via paired-end molecular tags and weighting algorithm[J]. BMC Med Genom, 2021, 14(1): 294. DOI: 10.1186/s12920-021-01141-4.
|
[20] |
Rabinowitz T, Polsky A, Golan D, et al. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders[J]. Genome Res, 2019, 29(3): 428-438. DOI: 10.1101/gr.235796.118.
|
[21] |
Pin-Jung C, Pai-Chi T, Zhu Y, et al. Noninvasive prenatal diagnostics: recent developments using circulating fetal nucleated cells[J]. Curr Obstet Gynecol Rep, 2019, 8(1): 1-8.
|
[22] |
Sabbatinelli G, Fantasia D, Palka C, et al. Isolation and enrichment of circulating fetal cells for NIPD: an overview[J]. Diagnostics (Basel), 2021, 11(12): 2239. DOI: 10.3390/diagnostics11122239.
|
[23] |
Chen Y, Wu Z, Sutlive J, et al. Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells[J]. J Nanobiotechnology, 2022, 20(1): 546. DOI: 10.1186/s12951-022-01749-3.
|
[24] |
Toft CLF, Ingerslev HJ, Kesmodel US, et al. Cell-based non-invasive prenatal testing for monogenic disorders: confirmation of unaffected fetuses following preimplantation genetic testing[J]. J Assist Reprod Genet, 2021, 38(8): 1959-1970. DOI: 10.1007/s10815-021-02104-5.
|
[25] |
Yu SCY, Jiang P, Peng W, et al. Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma[J]. Proc Natl Acad Sci USA, 2021, 118(50): e2114937118. DOI: 10.1073/pnas.2114937118.
|
[26] |
Vossaert L, Chakchouk I, Zemet R, et al. Overview and recent developments in cell-based noninvasive prenatal testing[J]. Prenat Diagn, 2021, 41(10): 1202-1214. DOI: 10.1002/pd.5957.
|
[27] |
Hill M, Twiss P, Verhoef TI, et al. Non-invasive prenatal diagnosis for cystic fibrosis: detection of paternal mutations, exploration of patient preferences and cost analysis[J]. Prenat Diagn, 2015, 35(10): 950-958. DOI: 10.1002/pd.4585.
|
[28] |
Xu C, Cai X, Chen S, et al. Comprehensive non-invasive prenatal screening for pregnancies with elevated risks of genetic disorders: protocol for a prospective, multicentre study[J]. BMJ Open, 2021, 11(8): e053617. DOI: 10.1136/bmjopen-2021-053617.
|
[29] |
Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders[J]. Ultrasound Obstet Gynecol, 2022, 59(1): 33-39. DOI: 10.1002/uog.23756.
|
[30] |
Hui L, Bianchi DW. Fetal fraction and noninvasive prenatal testing: what clinicians need to know[J]. Prenat Diagn, 2020, 40(2): 155-163. DOI: 10.1002/pd.5620.
|
[31] |
Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements[J]. Crit Rev Clin Lab Sci, 2020, 57(7): 484-507. DOI: 10.1080/10408363.2020.1750558.
|
[32] |
|
[33] |
Alyafee Y, Al Tuwaijri A, Umair M, et al. Non-invasive prenatal testing for autosomal recessive disorders: a new promising approach[J]. Front Genet, 2022, 13: 1047474. DOI: 10.3389/fgene.2022.1047474.
|
[34] |
|
[35] |
Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders[J]. Ultrasound Obstet Gynecol, 2022, 59(1): 33-39. DOI: 10.1002/uog.23756.
|
[36] |
Verhoef TI, Hill M, Drury S, et al. Non-invasive prenatal diagnosis (NIPD) for single gene disorders: cost analysis of NIPD and invasive testing pathways[J]. Prenat Diagn, 2016, 36(7): 636-642. DOI: 10.1002/pd.4832.
|
[37] |
Riku S, Hedriana H, Carozza JA, et al. Reflex single-gene non-invasive prenatal testing is associated with markedly better detection of fetuses affected with single-gene recessive disorders at lower cost[J]. J Med Econ, 2022, 25(1): 403-411. DOI: 10.1080/13696998.2022.2053384.
|
[38] |
Huster S. Non-invasive prenatal diagnostics (NIPD) in the system of medical care. Ethical and legal issues[J]. J Perinat Med, 2021, 49(8): 972-978. DOI: 10.1515/jpm-2021-0195.
|
[39] |
Kim NK. A normative review on non-invasive prenatal diagnosis (NIPD): focusing on the German discussion on PrenaTest ®[J]. Dev Reprod, 2021, 25(2): 113-121. DOI: 10.12717/DR.2021.25.2.113.
|