切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (05) : 517 -522. doi: 10.3877/cma.j.issn.1673-5250.2022.05.004

专题论坛

益生菌在新生儿呼吸系统疾病临床治疗中的研究现状
鄢锦丽, 陈大鹏()   
  1. 四川大学华西第二医院新生儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2022-03-27 修回日期:2022-08-31 出版日期:2022-10-01
  • 通信作者: 陈大鹏

Research progress on probiotics in clinical application of neonatal respiratory diseases

Jinli Yan, Dapeng Chen()   

  1. Department of Neonatology, Key Laboratory of Birth Defects and Related Disseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-03-27 Revised:2022-08-31 Published:2022-10-01
  • Corresponding author: Dapeng Chen
  • Supported by:
    National Key Research and Development Program(2017YFC0109004)
引用本文:

鄢锦丽, 陈大鹏. 益生菌在新生儿呼吸系统疾病临床治疗中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 517-522.

Jinli Yan, Dapeng Chen. Research progress on probiotics in clinical application of neonatal respiratory diseases[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 517-522.

新生儿呼吸系统疾病是新生儿常见疾病,也是导致新生儿死亡的常见原因。益生菌是通过定植在人体内,改变宿主某一部位菌群组成的一类对宿主有益的活性微生物。近年关于益生菌与新生儿呼吸系统疾病关系的研究,成为本领域研究热点。益生菌可增强肠道免疫功能,提高新生儿全身免疫力,从而对其呼吸系统疾病的各病理及病理生理功能产生阻遏作用,达到治疗该类疾病的目的。笔者拟就益生菌的定义及种类,新生儿临床应用的安全性及不良反应、治疗机制,以及对新生儿呼吸系统疾病治疗等最新研究现状进行阐述,旨在促进广大儿科医师更好地了解益生菌在治疗该类疾病中的作用。

Neonatal respiratory system disease is a common disease of newborns and a common cause of neonatal death. Probiotics are a kind of active microorganisms beneficial to the host by colonizing the human body and changing the composition of a certain part of the host. In recent years, researches on the relationship between probiotics and neonatal respiratory diseases have become a hot topic in this field. Probiotics can enhance the intestinal immune function and improve the systemic immunity of newborns, so as to suppress the pathological and pathophysiological functions of respiratory diseases and achieve purpose of treating these diseases. The author reviews the research progress on the definition and types of probiotics, safety, adverse effects and therapeutic mechanism of clinical application of probiotics in neonates, and probiotics in treatment of neonatal respiratory diseases, so as to enable pediatricians to better understand the role of probiotics in treatment ofsuch diseases.

[1]
Harper A, Vijayakumar V, Ouwehand AC, et al. Viral infections, the microbiome, and probiotics[j]. Front Cell Infect Microbiol, 2021, 10: 596166. DOI: 10.3389/fcimb.2020.596166.
[2]
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, et al. Probiotics: versatile bioactive components in promoting human health[J]. Medicina, 2020, 56(9): 433. DOI: 10.3390/medicina56090433.
[3]
Zhou A, Lei Y, Tang L, et al. Gut microbiota: the emerging link to lung homeostasis and disease[J]. J Bacteriol, 2021, 203(4): e00454-20. DOI: 10.1128/JB.00454-20.
[4]
Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis[J]. Mucosal Immunol, 2019, 12(4): 843-850. DOI: 10.1038/s41385-019-0160-6.
[5]
Hill C, Guarner F, Reid G, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(8): 506-514. DOI: 10.1038/nrgastro.2014.66.
[6]
中华预防医学会微生态学分会. 中国微生态调节剂临床应用专家共识(2020版)[J]. 中国微生态学杂志2020, 32(8): 953-965. DOI: 10.13381/j.cnki.cjm.202008020.
[7]
王华. 早产儿益生菌使用的国内现状及文献系统回顾[J]. 中华实用儿科临床杂志2021, 36(14): 1063-1067. DOI: 10.3760/cma.j.cn101070-20201122-01790.
[8]
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, et al. Mechanisms of action of probiotics[J]. Adv Nutr, 2019, 10(suppl_1): S49-S66. DOI: 10.1093/advances/nmy063.
[9]
Van den Akker CHP, Van Goudoever JB, Shamir R, et al. Probiotics and preterm infants: a position paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics[J]. J Pediatr Gastroenterol Nutr, 2020, 70(5): 664-680. DOI: 10.1097/MPG.0000000000002655.
[10]
Poindexter B, Cummings J, Hand I, et al. Use of probiotics in preterm infants[J]. Pediatrics, 2021, 147(6): e2021051485. DOI: 10.1542/peds.2021-051485.
[11]
Rangelova VR, Raycheva RD, Kevorkyan AK, et al. Ventilator-associated pneumonia in neonates admitted to a tertiary care NICU in Bulgaria[J]. Front Pediatr, 2022, 10: 909217. DOI: 10.3389/fped.2022.909217.
[12]
张应金,苏永棉,梁凤潇,等. 益生菌预防新生儿呼吸机相关性肺炎的临床疗效研究[J]. 中国小儿急救医学2012, 19(14): 405-407. DOI: 10.3760/cma.j.issn.1673-4912.2012.04.022.
[13]
吴香兰,李月凤,周北燕,等. 双歧杆菌对机械通气新生儿呼吸道和胃肠道的影响[J]. 中国当代儿科杂志2011, 13(9): 704-707. DOI: 10.1007/s12583-011-0153-1.
[14]
李学超,王建忠,刘元辉. 益生菌对机械通气新生儿呼吸道致病菌定植的影响[J]. 中国当代儿科杂志2012, 14(6): 406-408. DOI: 10.1007/s11783-011-0280-z.
[15]
刘雅文.益生菌制剂预防呼吸机相关性肺炎的Meta分析[D]. 南昌:南昌大学,2018.
[16]
解军. 双歧杆菌对新生儿呼吸机相关性肺炎的预防效果[J]. 中国社区医师2018, 34(4): 36-37. DOI: 10.3969/j.issn.1007-614x.2018.4.21.
[17]
Permall DL, Pasha AB, Chen X, et al. The lung microbiome in neonates[J]. Turk J Pediatr, 2019, 61(6): 821-830. DOI: 10.24953/turkjped.2019.06.001.
[18]
Li Y, He L, Zhao Q, et al. Microbial and metabolic profiles of bronchopulmonary dysplasia and therapeutic effects of potential probiotics Limosilactobacillus reuteri and Bifidobacterium bifidum[J]. J Appl Microbiol, 2022, 133(2): 908-921. DOI: 10.1111/jam.15602.
[19]
Qu Y, Guo S, Liu Y, et al. Association between probiotics and bronchopulmonary dysplasia in preterm infants[J]. Sci Rep, 2021, 11(1): 1-6. DOI: 10.1038/s41598-021-96489-z.
[20]
范佳英.早产儿肠道菌群变化与支气管肺发育不良症的相关研究[D]. 苏州:苏州大学,2020.
[21]
Chen SM, Lin CP, Jan MS. Early gut microbiota changes in preterm infants with bronchopulmonary dysplasia: a pilot case-control study[J]. Am J Perinatol, 2021, 38(11): 1142-1149. DOI: 10.1055/s-0040-1710554.
[22]
Yang K, Dong W. Perspectives on probiotics and bronchopulmonary dysplasia[J]. Front Pediatr, 2020, 8: 570247. DOI: 10.3389/fped.2020.570247.
[23]
魏贤,杨树杰,甘斌,等. 补充益生菌对胎粪吸入综合征患儿免疫功能的影响[J]. 中华全科医学2016, 14(12): 2057-2059. DOI: 10.16766/j.cnki.issn.1674-4152.2016.12.027.
[24]
Krusche J, Basse S, Schaub B. Role of early life immune regulation in asthma development[J]. Semin Immunopathol, 2020, 42(1): 29-42. DOI: 10.1007/s00281-019-00774-z.
[25]
Wu Z, Mehrabi Nasab E, Arora P, et al. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway[J]. J Transl Med, 2022, 20(1): 1-14. DOI: 10.1186/s12967-022-03337-3.
[26]
Altman MC, Beigelman A, Ciaccio C, et al. Evolving concepts in how viruses impact asthma: a Work Group Report of the Microbes in Allergy Committee of the American Academy of Allergy, Asthma & Immunology[J]. J Allergy Clin Immunol, 2020, 145(5): 1332-1344. DOI: 10.1016/j.jaci.2019.12.904.
[27]
肖小兵,邓建荣,聂煜哲,等. 5岁以下儿童支气管哮喘发病与其母亲孕期及新生儿时期的相关因素分析[J]. 临床肺科杂志2019, 24(4): 705-708. DOI: 10.3969/j.issn.1009-6663.2019.04.030.
[28]
曾双志,秦微,谭稻香,等. 肠道菌群制剂对新生儿哮喘57例防治效果观察[J]. 现代诊断与治疗2015, 26(13): 2956-2957.
[29]
Sestito S, D′Auria E, Baldassarre ME, et al. The role of prebiotics and probiotics in prevention of allergic diseases in infants[J]. Front Pediatr, 2020, 8: 583946. DOI: 10.3389/fped.2020.583946.
[30]
Manna S, Chowdhury T, Chakraborty R, et al. Probiotics-derived peptides and their immunomodulatory molecules can play a preventive role against viral diseases including COVID-19[J]. Probiotics Antimicrob Proteins, 2021, 13(3): 611-623. DOI: 10.1007/s12602-020-09727-7.
[31]
Monteiro CRAV, do Carmo MS, Melo BO, et al. In vitro antimicrobial activity and probiotic potential of Bifidobacterium and Lactobacillus against species of clostridium[J]. Nutrients, 2019, 11(2): 448. DOI: 10.3390/nu11020448.
[32]
Du T, Lei A, Zhang N, et al. The beneficial role of probiotic Lactobacillus in respiratory diseases[J]. Front Immunol, 2022, 13: 908010. DOI: 10.3389/fimmu.2022.908010.
[33]
Chen J, Chen X, Ho CL. Recent development of probiotic Bifidobacteria for treating human diseases[J]. Front Bioeng Biotechnol, 2021, 9: 770248. DOI: 10.3389/fbioe.2021.770248.
[1] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[2] 徐婷婷, 詹泳池, 王晓东, 刘兴会. 电子胎心监测结果出现正弦波形的胎母输血综合征围生期结局分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 382-389.
[3] 梅娟, 陶旭炜. 弥散性血管内凝血为首发表现先天性肝内门体静脉分流新生儿2例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 322-330.
[4] 张禾璇, 杨雪, 王侣金, 李林洁, 刘兴宇. 新生儿葡萄糖-6-磷酸脱氢酶缺乏症筛查及基因突变特征分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 200-208.
[5] 郭立珍, 范天群, 张欣凯, 蒋韵红, 金蓉, 刘冬云. 早产小于胎龄儿发生支气管肺发育不良的危险因素及预后分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 209-215.
[6] 尹燕燕, 刘爱贤. 多重耐药菌感染呼吸机相关性肺炎的危险因素及预后分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 83-90.
[7] 张延清, 冯少霞, 陈宇. 乳酸乳球菌对致龋菌生长及生物膜形成的作用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 96-102.
[8] 郑伟军, 郑超, 方一凡, 吴典明, 王翔, 陈飞, 刘明坤. 新生儿急性阑尾炎17例诊治分析并文献回顾[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 291-293.
[9] 刘春军, 严方方, 王宝锋, 常婷婷, 郭红红, 李志强. 替加环素联合人免疫球蛋白治疗XDRAB致VAP 的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 797-800.
[10] 燕红玲, 王岩岩, 陈树斌. PCT、NLR联合LUBS预测ICU CRKP致呼吸机相关肺炎撤机及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 617-620.
[11] 白若靖, 郭军. 维生素D对肺部疾病临床意义的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 659-662.
[12] 陈华萍, 陈晓龙, 胡明冬. 难治性哮喘的发病机制及诊治进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 144-147.
[13] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[14] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[15] 扈姝琴, 许红燕, 曹丹, 丁亚艳. 云平台视频管理在患儿重症哮喘中的应用及对应对方式的影响研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 218-223.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?