切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (05) : 517 -522. doi: 10.3877/cma.j.issn.1673-5250.2022.05.004

专题论坛

益生菌在新生儿呼吸系统疾病临床治疗中的研究现状
鄢锦丽, 陈大鹏()   
  1. 四川大学华西第二医院新生儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2022-03-27 修回日期:2022-08-31 出版日期:2022-10-01
  • 通信作者: 陈大鹏

Research progress on probiotics in clinical application of neonatal respiratory diseases

Jinli Yan, Dapeng Chen()   

  1. Department of Neonatology, Key Laboratory of Birth Defects and Related Disseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-03-27 Revised:2022-08-31 Published:2022-10-01
  • Corresponding author: Dapeng Chen
  • Supported by:
    National Key Research and Development Program(2017YFC0109004)
引用本文:

鄢锦丽, 陈大鹏. 益生菌在新生儿呼吸系统疾病临床治疗中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 517-522.

Jinli Yan, Dapeng Chen. Research progress on probiotics in clinical application of neonatal respiratory diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 517-522.

新生儿呼吸系统疾病是新生儿常见疾病,也是导致新生儿死亡的常见原因。益生菌是通过定植在人体内,改变宿主某一部位菌群组成的一类对宿主有益的活性微生物。近年关于益生菌与新生儿呼吸系统疾病关系的研究,成为本领域研究热点。益生菌可增强肠道免疫功能,提高新生儿全身免疫力,从而对其呼吸系统疾病的各病理及病理生理功能产生阻遏作用,达到治疗该类疾病的目的。笔者拟就益生菌的定义及种类,新生儿临床应用的安全性及不良反应、治疗机制,以及对新生儿呼吸系统疾病治疗等最新研究现状进行阐述,旨在促进广大儿科医师更好地了解益生菌在治疗该类疾病中的作用。

Neonatal respiratory system disease is a common disease of newborns and a common cause of neonatal death. Probiotics are a kind of active microorganisms beneficial to the host by colonizing the human body and changing the composition of a certain part of the host. In recent years, researches on the relationship between probiotics and neonatal respiratory diseases have become a hot topic in this field. Probiotics can enhance the intestinal immune function and improve the systemic immunity of newborns, so as to suppress the pathological and pathophysiological functions of respiratory diseases and achieve purpose of treating these diseases. The author reviews the research progress on the definition and types of probiotics, safety, adverse effects and therapeutic mechanism of clinical application of probiotics in neonates, and probiotics in treatment of neonatal respiratory diseases, so as to enable pediatricians to better understand the role of probiotics in treatment ofsuch diseases.

[1]
Harper A, Vijayakumar V, Ouwehand AC, et al. Viral infections, the microbiome, and probiotics[j]. Front Cell Infect Microbiol, 2021, 10: 596166. DOI: 10.3389/fcimb.2020.596166.
[2]
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, et al. Probiotics: versatile bioactive components in promoting human health[J]. Medicina, 2020, 56(9): 433. DOI: 10.3390/medicina56090433.
[3]
Zhou A, Lei Y, Tang L, et al. Gut microbiota: the emerging link to lung homeostasis and disease[J]. J Bacteriol, 2021, 203(4): e00454-20. DOI: 10.1128/JB.00454-20.
[4]
Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis[J]. Mucosal Immunol, 2019, 12(4): 843-850. DOI: 10.1038/s41385-019-0160-6.
[5]
Hill C, Guarner F, Reid G, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(8): 506-514. DOI: 10.1038/nrgastro.2014.66.
[6]
中华预防医学会微生态学分会. 中国微生态调节剂临床应用专家共识(2020版)[J]. 中国微生态学杂志2020, 32(8): 953-965. DOI: 10.13381/j.cnki.cjm.202008020.
[7]
王华. 早产儿益生菌使用的国内现状及文献系统回顾[J]. 中华实用儿科临床杂志2021, 36(14): 1063-1067. DOI: 10.3760/cma.j.cn101070-20201122-01790.
[8]
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, et al. Mechanisms of action of probiotics[J]. Adv Nutr, 2019, 10(suppl_1): S49-S66. DOI: 10.1093/advances/nmy063.
[9]
Van den Akker CHP, Van Goudoever JB, Shamir R, et al. Probiotics and preterm infants: a position paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics[J]. J Pediatr Gastroenterol Nutr, 2020, 70(5): 664-680. DOI: 10.1097/MPG.0000000000002655.
[10]
Poindexter B, Cummings J, Hand I, et al. Use of probiotics in preterm infants[J]. Pediatrics, 2021, 147(6): e2021051485. DOI: 10.1542/peds.2021-051485.
[11]
Rangelova VR, Raycheva RD, Kevorkyan AK, et al. Ventilator-associated pneumonia in neonates admitted to a tertiary care NICU in Bulgaria[J]. Front Pediatr, 2022, 10: 909217. DOI: 10.3389/fped.2022.909217.
[12]
张应金,苏永棉,梁凤潇,等. 益生菌预防新生儿呼吸机相关性肺炎的临床疗效研究[J]. 中国小儿急救医学2012, 19(14): 405-407. DOI: 10.3760/cma.j.issn.1673-4912.2012.04.022.
[13]
吴香兰,李月凤,周北燕,等. 双歧杆菌对机械通气新生儿呼吸道和胃肠道的影响[J]. 中国当代儿科杂志2011, 13(9): 704-707. DOI: 10.1007/s12583-011-0153-1.
[14]
李学超,王建忠,刘元辉. 益生菌对机械通气新生儿呼吸道致病菌定植的影响[J]. 中国当代儿科杂志2012, 14(6): 406-408. DOI: 10.1007/s11783-011-0280-z.
[15]
刘雅文.益生菌制剂预防呼吸机相关性肺炎的Meta分析[D]. 南昌:南昌大学,2018.
[16]
解军. 双歧杆菌对新生儿呼吸机相关性肺炎的预防效果[J]. 中国社区医师2018, 34(4): 36-37. DOI: 10.3969/j.issn.1007-614x.2018.4.21.
[17]
Permall DL, Pasha AB, Chen X, et al. The lung microbiome in neonates[J]. Turk J Pediatr, 2019, 61(6): 821-830. DOI: 10.24953/turkjped.2019.06.001.
[18]
Li Y, He L, Zhao Q, et al. Microbial and metabolic profiles of bronchopulmonary dysplasia and therapeutic effects of potential probiotics Limosilactobacillus reuteri and Bifidobacterium bifidum[J]. J Appl Microbiol, 2022, 133(2): 908-921. DOI: 10.1111/jam.15602.
[19]
Qu Y, Guo S, Liu Y, et al. Association between probiotics and bronchopulmonary dysplasia in preterm infants[J]. Sci Rep, 2021, 11(1): 1-6. DOI: 10.1038/s41598-021-96489-z.
[20]
范佳英.早产儿肠道菌群变化与支气管肺发育不良症的相关研究[D]. 苏州:苏州大学,2020.
[21]
Chen SM, Lin CP, Jan MS. Early gut microbiota changes in preterm infants with bronchopulmonary dysplasia: a pilot case-control study[J]. Am J Perinatol, 2021, 38(11): 1142-1149. DOI: 10.1055/s-0040-1710554.
[22]
Yang K, Dong W. Perspectives on probiotics and bronchopulmonary dysplasia[J]. Front Pediatr, 2020, 8: 570247. DOI: 10.3389/fped.2020.570247.
[23]
魏贤,杨树杰,甘斌,等. 补充益生菌对胎粪吸入综合征患儿免疫功能的影响[J]. 中华全科医学2016, 14(12): 2057-2059. DOI: 10.16766/j.cnki.issn.1674-4152.2016.12.027.
[24]
Krusche J, Basse S, Schaub B. Role of early life immune regulation in asthma development[J]. Semin Immunopathol, 2020, 42(1): 29-42. DOI: 10.1007/s00281-019-00774-z.
[25]
Wu Z, Mehrabi Nasab E, Arora P, et al. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway[J]. J Transl Med, 2022, 20(1): 1-14. DOI: 10.1186/s12967-022-03337-3.
[26]
Altman MC, Beigelman A, Ciaccio C, et al. Evolving concepts in how viruses impact asthma: a Work Group Report of the Microbes in Allergy Committee of the American Academy of Allergy, Asthma & Immunology[J]. J Allergy Clin Immunol, 2020, 145(5): 1332-1344. DOI: 10.1016/j.jaci.2019.12.904.
[27]
肖小兵,邓建荣,聂煜哲,等. 5岁以下儿童支气管哮喘发病与其母亲孕期及新生儿时期的相关因素分析[J]. 临床肺科杂志2019, 24(4): 705-708. DOI: 10.3969/j.issn.1009-6663.2019.04.030.
[28]
曾双志,秦微,谭稻香,等. 肠道菌群制剂对新生儿哮喘57例防治效果观察[J]. 现代诊断与治疗2015, 26(13): 2956-2957.
[29]
Sestito S, D′Auria E, Baldassarre ME, et al. The role of prebiotics and probiotics in prevention of allergic diseases in infants[J]. Front Pediatr, 2020, 8: 583946. DOI: 10.3389/fped.2020.583946.
[30]
Manna S, Chowdhury T, Chakraborty R, et al. Probiotics-derived peptides and their immunomodulatory molecules can play a preventive role against viral diseases including COVID-19[J]. Probiotics Antimicrob Proteins, 2021, 13(3): 611-623. DOI: 10.1007/s12602-020-09727-7.
[31]
Monteiro CRAV, do Carmo MS, Melo BO, et al. In vitro antimicrobial activity and probiotic potential of Bifidobacterium and Lactobacillus against species of clostridium[J]. Nutrients, 2019, 11(2): 448. DOI: 10.3390/nu11020448.
[32]
Du T, Lei A, Zhang N, et al. The beneficial role of probiotic Lactobacillus in respiratory diseases[J]. Front Immunol, 2022, 13: 908010. DOI: 10.3389/fimmu.2022.908010.
[33]
Chen J, Chen X, Ho CL. Recent development of probiotic Bifidobacteria for treating human diseases[J]. Front Bioeng Biotechnol, 2021, 9: 770248. DOI: 10.3389/fbioe.2021.770248.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[3] 杨皓媛, 龚杰, 邹青伟, 阮航. 哮喘孕妇的母婴不良妊娠结局研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 522-529.
[4] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[5] 胡诤贇, 史建伟, 申建伟, 王冰, 蒋春苗, 刘冲. 基于机器学习鉴定早产儿支气管肺发育不良的关键基因[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 446-454.
[6] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[7] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[8] 娄丽丽, 刘瀚旻. 儿童哮喘易感基因及表观遗传学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 249-255.
[9] 赵金琦, 杨楠, 宫丽霏, 唐玥, 李璐璐, 杨海河, 孔元原. 2011—2020年北京市小于胎龄儿出生状况分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 278-286.
[10] 安钱, 徐彬, 陈志祥, 徐晶晶, 黄丹丹. PCT、CRP及SAA对呼吸机相关性肺炎病情严重程度和预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 544-546.
[11] 张荷连, 刘禹, 李丹妮, 彭茹, 杨彩蝶, 窦恒, 吴红梅. 心理障碍对重度哮喘患者的疾病控制及生活工作质量的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 589-591.
[12] 刘佳铭, 孙晓容, 文健, 何晓丽, 任茂玲. 有氧运动对成人哮喘肺功能、生活质量以及哮喘控制影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 592-595.
[13] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[14] 路东明, 陈建华, 艾月琴. 布地格福吸入气雾剂治疗支气管哮喘的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 361-363.
[15] 刘汶睿, 高丽娜, 于书娴, 周建刚. 支气管哮喘患者血清IL-27与IFN-γ及肺功能相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 224-226.
阅读次数
全文


摘要