切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (05) : 512 -516. doi: 10.3877/cma.j.issn.1673-5250.2022.05.003

专题论坛

环状RNA与宫颈癌发病机制的研究现状
卫怡妙, 李亚芹, 赵卫红()   
  1. 山西医科大学第二医院妇产科,太原 030001
  • 收稿日期:2022-01-30 修回日期:2022-09-06 出版日期:2022-10-01
  • 通信作者: 赵卫红

Research progress on circular RNA in pathogenesis of cervical cancer

Yimiao Wei, Yaqin Li, Weihong Zhao()   

  1. Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2022-01-30 Revised:2022-09-06 Published:2022-10-01
  • Corresponding author: Weihong Zhao
  • Supported by:
    National Natural Science Foundation of China(81702583); China Postdoctoral Science Foundation Project(2019M651072); Applied Basic Research Program of Shanxi Province(201901D211506)
引用本文:

卫怡妙, 李亚芹, 赵卫红. 环状RNA与宫颈癌发病机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 512-516.

Yimiao Wei, Yaqin Li, Weihong Zhao. Research progress on circular RNA in pathogenesis of cervical cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 512-516.

宫颈癌是最常见妇科恶性肿瘤之一,其发病率和导致的患者死亡率均居全球癌症第4位。目前已明确宫颈癌的发生、发展与高危型人乳头瘤病毒(HR-HPV)持续感染有关。环状RNA(circRNA)是一种新型内源性非编码RNA(ncRNA),与其他种类RNA相比,circRNA的3个主要特征为进化保守性、结构稳定性和组织特异性。不同种类circRNA在宫颈癌中异常表达,可通过调控其相应结合元件参与宫颈癌细胞增殖、迁移和侵袭等,从而在宫颈癌的发生、发展中发挥重要作用。笔者拟就circRNA的生物学功能及其在宫颈癌发病机制中作用的最新研究进行阐述,旨在为宫颈癌的诊疗提供新靶点。

Cervical cancer is one of the most common gynecological malignancies, and its morbidity and mortality both rank fourth in the world. It is now clear that the occurrence and development of cervical cancer are related to persistent infection with high risk-human papillomavirus (HR-HPV). Circular RNA (circRNA) is a new type of endogenous non-coding RNA (ncRNA), compared with other types of RNA, the three main characteristics of circRNA are evolutionary conservation, structural stability and tissue specificity. Different kinds of circRNA are abnormally expressed in cervical cancer and can participate in proliferation, migration and invasion of cervical cancer cells by regulating their corresponding binding elements, thereby playing an important role in the occurrence and development of cervical cancer. In this paper, the biological functions of circRNA and latest researches on its role of cervical cancer pathogenesis are reviewed, so as to provide a new target for the diagnosis and treatment of cervical cancer.

[1]
Hoque MR, Haque E, Karim MR. Cervical cancer in low-income countries: a Bangladeshi perspective[J].Int J Gynaecol Obstet, 2021, 152(1): 19-25. DOI:10.1002/ijgo.13400.
[2]
Wang R, Pan W, Jin L, et al. Human papillomavirus vaccine against cervical cancer: opportunity and challenge[J].Cancer Lett, 2020, 471: 88-102. DOI: 10.1016/j.canlet.2019.11.039.
[3]
Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and analysis[J]. Brief Bioinform, 2021, 22(2): 1706-1728. DOI: 10.1093/bib/bbaa001.
[4]
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71(3): 428-442. DOI: 10.1016/j.molcel.2018.06.034.
[5]
Tran AM, Chalbatani GM, Berland L, et al. A new world of biomarkers and therapeutics for female reproductive system and breast cancers: circular RNAs[J]. Front Cell Dev Biol, 2020, 8: 50. DOI:10.3389/fcell.2020.00050.
[6]
Huang J, Zhou Q, Li Y. Circular RNAs in gynecological disease: promising biomarkers and diagnostic targets[J]. Biosci Rep, 2019, 39(5): BSR20181641. DOI: 10.1042/BSR20181641.
[7]
Xu S, Zhou L, Ponnusamy M, et al. A comprehensive review of circRNA: from purification and identification to disease marker potential[J]. Peer J, 2018, 6: e5503. DOI: 10.7717/peerj.5503.
[8]
Tang X, Ren H, Guo M, et al. Review on circular RNAs and new insights into their roles in cancer[J]. Comput Struct Biotechnol J, 2021, 19: 910-928. DOI: 10.1016/j.csbj.2021.01.018.
[9]
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490. DOI: 10.1038/s41580-020-0243-y.
[10]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. DOI: 10.1038/nature11993.
[11]
Panda AC. Circular RNAs act as miRNA sponges[J]. Adv Exp Med Biol, 2018, 1087: 67-79. DOI: 10.1007/978-981-13-1426-1_6.
[12]
Chen L, Zhang S, Wu J, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family[J]. Oncogene, 2017, 36(32): 4551-4561. DOI: 10.1038/onc.2017.89.
[13]
Chen J, Yang J, Fei X, et al. CircRNA ciRS-7: a novel oncogene in multiple cancers[J]. Int J Biol Sci, 2021, 17(1): 379-389. DOI: 10.7150/ijbs.54292.
[14]
Li H, Lan M, Liao X, et al. Circular RNA cir-ITCH promotes osteosarcoma migration and invasion through cir-ITCH/miR-7/EGFR pathway[J]. Technol Cancer Res Treat, 2020, 19: 1533033819898728. DOI: 10.1177/1533033819898728.
[15]
Yang CD, Yuan WB, Yang X, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression[J]. Mol Cancer, 2018, 17(1): 19. DOI: 10.1186/s12943-018-0771-7.
[16]
Patop IL, Wust S, Kadener S, et al. Past, present, and future of circRNAs[J]. EMBO J, 2019, 38(16): e100836. DOI: 10.15252/embj.2018100836.
[17]
Chen Y, Lin Y, Shu Y, et al. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1): 94. DOI: 10.1186/s12943-020-01207-4.
[18]
Legnini I, Di Timoteo G, Rossi F, et al.Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22-37. DOI: 10.1016/j.molcel.2017.02.017.
[19]
Yang Y, Gao X, Zhang M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis[J]. J Natl Cancer Inst, 2018, 110(3): 304-315. DOI: 10.1093/jnci/djx166.
[20]
Zhang M, Huang N, Yang X, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J].Oncogene, 2018, 37(13): 1805-1814. DOI: 10.1038/s41388-017-0019-9.
[21]
Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer[J]. Mol Cancer, 2020, 19(1): 30. DOI: 10.1186/s12943-020-1135-7.
[22]
Chaichian S, Shafabakhsh R, Mirhashemi SM, et al. Circular RNAs: a novel biomarker for cervical cancer[J]. J Cell Physiol, 2020, 235(2): 718-724. DOI: 10.1002/jcp.29009.
[23]
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1): 87-97. DOI: 10.1002/jnr.24356.
[24]
Salzman J. Circular RNA expression: its potential regulation and function[J]. Trends Genet, 2016, 32(5): 309-316. DOI: 10.1016/j.tig.2016.03.002.
[25]
Li Y, Ge YZ, Xu L, et al. Circular RNA ITCH: a novel tumor suppressor in multiple cancers[J]. Life Sci, 2020, 254: 117176. DOI: 10.1016/j.lfs.2019.117176.
[26]
Tornesello ML, Faraonio R, Buonaguro L, et al. The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer[J]. Front Oncol, 2020, 10: 150. DOI: 10.3389/fonc.2020.00150.
[27]
Yeo-teh NSL, Ito Y, Jha S. High-risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis[J]. Int J Mol Sci, 2018, 19(6): 1706. DOI: 10.3390/ijms19061706.
[28]
Zheng SR, Zhang HR, Zhang ZF, et al. Human papillomavirus 16 E7 on coprotein alters the expression profiles of circular RNAs in Caski cells[J]. J Cancer, 2018, 9(20): 3755-3764. DOI: 10.7150/jca.24253.
[29]
Yu L, Zheng ZM. Human papillomavirus type 16 circular RNA is barely detectable for the claimed biological activity[J]. mBio, 2022, 13(1): e0359421. DOI: 10.1128/mbio.03594-21.
[30]
Zhao J, Lee EE, Kim J, et al.Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus[J]. Nature Communications, 2019, 10(1): 2300. DOI: 10.1038/s41467-019-10246-5.
[31]
Jiao J, Zhang T, Jiao X, et al. Hsa_circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion[J]. J Cell Physiol, 2020, 235(2): 1287-1295. DOI: 10.1002/jcp.29045.
[32]
Kourtidis A, Lu R, Pence LJ, et al. A central role for cadherin signaling in cancer[J]. Exp Cell Res, 2017, 358(1): 78-85. DOI: 10.1016/j.yexcr.2017.04.006.
[33]
Daulagala AC, Bridges MC, Kourtidis A. E-cadherin beyond structure: a signaling hub in colon homeostasis and disease[J]. Int J Mol Sci, 2019, 20(11): 2756. DOI: 10.3390/ijms20112756.
[34]
Ma L, Yang R, Gu J, et al. The expression of AGGF1, FOXC2, and E-cadherin in esophageal carcinoma and their clinical significance[J]. Medicine (Baltimore), 2020, 99(37): e22173. DOI: 10.1097/MD.0000000000022173.
[35]
He J, Lyu X, Zeng Z. A potential disease monitoring and prognostic biomarker in cervical cancer patients: the clinical application of circular RNA_0018289[J]. J Clin Lab Anal, 2020, 34(8): e23340. DOI: 10.1002/jcla.23340.
[36]
Gao YL, Zhang MY, Xu B, et al. Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis[J]. Oncotarget, 2017, 8(49): 86625-86633. DOI: 10.18632/oncotarget.21257.
[37]
Wang J, Li H, Liang Z. circ-MYBL2 serves as a sponge for miR-361-3p promoting cervical cancer cells proliferation and invasion[J]. Onco Targets Ther, 2019, 12: 9957-9964. DOI: 10.2147/OTT.S218976.
[38]
Wang Y, Wang L, Wang W,et al.Overexpression of circular RNA hsa_circ_0001038 promotes cervical cancer cell progression by acting as a ceRNA for miR-337-3p to regulate cyclin-M3 and metastasis-associated in colon cancer 1 expression[J]. Gene, 2020, 733: 144273. DOI: 10.1016/j.gene.2019.144273.
[39]
Ma H, Tian T, Liu X, et al. Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis[J]. Biomed Pharmacother, 2019, 118: 109311. DOI: 10.1016/j.biopha.2019.109311.
[1] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[2] 董双, 李晓莹, 孙立涛, 田家玮. 影像学技术在宫颈癌术前临床分期中的应用进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 113-119.
[3] 张非红, 夏斌. 肠道菌群失调与新生儿坏死性小肠结肠炎发病机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 523-527.
[4] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[5] 肖倩, 张丹丹, 张婷, 贺婵娟, 张伟芳, 吴登旬, 刘英. 树突状细胞在口腔扁平苔藓发病机制中的作用[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 229-233.
[6] 黄嘉明, 段红霞, 赖逾鹏, 王大吉, 刘兴娇, 沈鑫, 王梅英. 狼疮性肾炎慢性化中肾脏固有细胞的间充质化研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 347-352.
[7] 王明. 糖尿病肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(05): 300-300.
[8] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[9] 李文捷, 卢弘. 幼年特发性关节炎相关葡萄膜炎的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 40-44.
[10] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[11] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[12] 王敏, 张妍, 王盈熹, 赵龙, 夏书月. 外泌体在慢性阻塞性肺疾病中的作用[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 45-51.
[13] 刘迎, 尹嫚, 杨林青, 王云飞. 子宫颈浸润性复层产黏液的癌的诊断学特征并文献复习[J]. 中华诊断学电子杂志, 2023, 11(03): 173-177.
[14] 路旗, 李传方, 甘立军. 酒精性心肌病病理分子机制的研究进展[J]. 中华诊断学电子杂志, 2022, 10(04): 248-252.
[15] 郑茂凤, 时晶, 李婷, 徐筱青, 田金洲. 血管性帕金森综合征的临床特征及诊治研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 347-350.
阅读次数
全文


摘要