切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (05) : 523 -527. doi: 10.3877/cma.j.issn.1673-5250.2022.05.005

专题论坛

肠道菌群失调与新生儿坏死性小肠结肠炎发病机制的研究现状
张非红, 夏斌()   
  1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2022-05-30 修回日期:2022-09-04 出版日期:2022-10-01
  • 通信作者: 夏斌

Research progress on neonatal gut microbiota and pathogenesis of necrotizing enterocolitis

Feihong Zhang, Bin Xia()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-05-30 Revised:2022-09-04 Published:2022-10-01
  • Corresponding author: Bin Xia
  • Supported by:
    National Natural Science Foundation of China(81370738)
引用本文:

张非红, 夏斌. 肠道菌群失调与新生儿坏死性小肠结肠炎发病机制的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 523-527.

Feihong Zhang, Bin Xia. Research progress on neonatal gut microbiota and pathogenesis of necrotizing enterocolitis[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 523-527.

新生儿出生后,立即开始肠道菌群定植,这一关键过程若被中断或延迟,均可能导致其肠道菌群失调,进而导致新生儿坏死性小肠结肠炎(NEC)发生。肠道菌群失调(数量与种类失调)在新生儿NEC发生、发展过程中的具体作用机制迄今尚未阐明。最新研究发现,新生儿NEC发病前,机体肠道肠杆菌科菌群、梭状芽孢杆菌富集,而厚壁菌门、拟杆菌门细菌数量均减少,这些肠道菌群数量与种类失调,可能在新生儿NEC发病过程中发挥重要作用。笔者拟就新生儿肠道菌群特点、肠道菌群失调与新生儿NEC发病机制的最新研究现状进行阐述。

Gut microbiota colonizes immediately after neonatal birth. The interruption or delay of gut microbiota colonization, resulting in gut microbiota dysbiosis, is a key risk factor for neonatal necrotizing enterocolitis (NEC). The specific mechanism of the occurence of gut microbiota dysbiosis (number and species imbalance) and the development of NEC is still not completely understood yet. Recent studies have found the enrichment of Enterobacteriaceae and Clostridium and the decrease of Firmicutes and Bacteroides before onset of neonatal NEC. The imbalance of number and species of gut microbiota may play an important role in the pathogenesis of neonatal NEC. The author intends to elaborate on the latest researches of characteristics and imbalance of neonatal gut microbiota, and the pathogenesis of neonatal NEC.

[1]
Moschino L, Duci M, Fascetti LF, et al. Optimizing nutritional strategies to prevent necrotizing enterocolitis and growth failure after bowel resection[J]. Nutrients, 2021, 13(2): 340. DOI: 10.3390/nu13020340.
[2]
Raba AA, O′Sullivan A, Miletin J. Pathogenesis of necrotising enterocolitis: the impact of the altered gut microbiota and antibiotic exposure in preterm infants[J]. Acta Paediatr, 2021, 110(2): 433-440. DOI: 10.1111/apa.15559.
[3]
Pammi M, Cope J, Tarr PI, et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and Meta-analysis[J]. Microbiome, 2017, 5(1): 31. DOI: 10.1186/s40168-017-0248-8.
[4]
Thanert R, Keen EC, Dantas G, et al. Necrotizing enterocolitis and the microbiome: current status and future directions[J]. J Infect Dis, 2021, 223(12 Suppl 2): S257-S263. DOI: 10.1093/infdis/jiaa604.
[5]
Lee JK, Hern TL, Ramadas A, et al. Exploring the role of gut bacteria in health and disease in preterm neonates[J]. Int J Environ Res Public Health, 2020, 17(19): 6963. DOI: 10.3390/ijerph17196963.
[6]
Coelho G, Ayres L, Barreto DS, et al. Acquisition of microbiota according to the type of birth: an integrative review[J]. Rev Lat Am Enfermagem, 2021, 29: e3446. DOI: 10.1590/1518.8345.4466.3446.
[7]
Lyons KE, Ryan CA, Dempsey EM, et al. Breast milk, a source of beneficial microbes and associated benefits for infant health[J]. Nutrients, 2020, 12(4): 1039. DOI: 10.3390/nu12041039.
[8]
Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants[J]. Dev Psychobiol, 2019, 61(5): 739-751. DOI: 10.1002/dev.21806.
[9]
Tauchi H, Yahagi K, Yamauchi T, et al. Gut microbiota development of preterm infants hospitalised in intensive care units[J]. Benef Microbes, 2019, 10(6): 641-651. DOI: 10.3920/BM2019.0003.
[10]
Korpela K, Blakstad EW, Moltu SJ, et al. Intestinal microbiota development and gestational age in preterm neonates[J]. Sci Rep, 2018, 8(1): 2453-2459. DOI: 10.1038/s41598-018-20827-x.
[11]
Neu J, Pammi M. Necrotizing enterocolitis: the intestinal microbiome, metabolome and inflammatory mediators[J]. Semin Fetal Neonatal Med, 2018, 23(6): 400-405. DOI: 10.1016/j.siny.2018.08.001.
[12]
Shaw AG, Sim K, Rose G, et al. Premature neonatal gut microbial community patterns supporting an epithelial TLR-mediated pathway for necrotizing enterocolitis[J]. BMC Microbiol, 2021, 21(1): 225. DOI: 10.1186/s12866-021-02285-0.
[13]
Olm MR, Bhattacharya N, Crits-Christoph A, et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria[J]. Sci Adv, 2019, 5(12): e5727. DOI: 10.1126/sciadv.aax5727.
[14]
Neu J. Necrotizing enterocolitis: a multi-omic approach and the role of the microbiome[J]. Dig Dis Sci, 2020, 65(3): 789-796. DOI: 10.1007/s10620-020-06104-w.
[15]
Hackam DJ, Sodhi CP. Bench to bedside - new insights into the pathogenesis of necrotizing enterocolitis[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(7): 468-479. DOI: 10.1038/s41575-022-00594-x.
[16]
Sampah M, Hackam DJ. Dysregulated mucosal immunity and associated pathogeneses in preterm neonates[J]. Front Immunol, 2020, 11: 899. DOI: 10.3389/fimmu.2020.00899.
[17]
Hackam DJ, Sodhi CP. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis[J]. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 229-238. DOI: 10.1016/j.jcmgh.2018.04.001.
[18]
Paradis T, Begue H, Basmaciyan L, et al. Tight junctions as a key for pathogens invasion in intestinal epithelial cells[J]. Int J Mol Sci, 2021, 22(5): 2506. DOI: 10.3390/ijms22052506.
[19]
Hackam DJ, Sodhi CP, Good M. New insights into necrotizing enterocolitis: from laboratory observation to personalized prevention and treatment[J]. J Pediatr Surg, 2019, 54(3): 398-404. DOI: 10.1016/j.jpedsurg.2018.06.012.
[20]
Sampah M, Hackam DJ. Prenatal immunity and influences on necrotizing enterocolitis and associated neonatal disorders[J]. Front Immunol, 2021, 12: 650709. DOI: 10.3389/fimmu.2021.650709.
[21]
Hoang TK, He B, Wang T, et al. Protective effect of Lactobacillus reuteri DSM 17938 against experimental necrotizing enterocolitis is mediated by Toll-like receptor 2[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(2): G231-G240. DOI: 10.1152/ajpgi.00084.2017.
[22]
Pammi M, Hollister E, Neu J. Gut injury and the microbiome in neonates[J]. Clin Perinatol, 2020, 47(2): 369-382. DOI: 10.1016/j.clp.2020.02.010.
[23]
Yuan Y, Ding D, Zhang N, et al. TNF-alpha induces autophagy through ERK1/2 pathway to regulate apoptosis in neonatal necrotizing enterocolitis model cells IEC-6[J]. Cell Cycle, 2018, 17(11): 1390-1402. DOI: 10.1080/15384101.2018.1482150.
[24]
Burgueno JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5): 263-278. DOI: 10.1038/s41575-019-0261-4.
[25]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease[J]. Cell Research, 2020, 30(6): 492-506. DOI: 10.1038/s41422-020-0332-7.
[26]
Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annu Rev Immunol, 2020, 38: 23-48. DOI: 10.1146/annurev-immunol-070119-115104.
[27]
Xiao Z, Liu L, Pei X, et al. A potential probiotic for diarrhea: clostridium tyrobutyricum protects against LPS-induced epithelial dysfunction via IL-22 produced by Th17 cells in the ileum[J]. Front Immunol, 2021, 12: 758227. DOI: 10.3389/fimmu.2021.758227.
[28]
Schönherr-Hellec S, Aires J. Clostridia and necrotizing enterocolitis in preterm neonates[J]. Anaerobe, 2019, 58: 6-12. DOI: 10.1016/j.anaerobe.2019.04.005.
[29]
Schonherr-Hellec S, Klein GL, Delannoy J, et al. Clostridial strain-specific characteristics associated with necrotizing enterocolitis[J]. Appl Environ Microbiol, 2018, 84(7): e02428-17. DOI: 10.1128/AEM.02428-17.
[30]
Cassir N, Grandvuillemin I, Boxberger M, et al. Case report: clostridium neonatale bacteremia in a preterm neonate with necrotizing enterocolitis[J]. Front Pediatr, 2021, 9: 771467. DOI: 10.3389/fped.2021.771467.
[31]
Mihi B, Good M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: the state of the science[J]. Clin Perinatol, 2019, 46(1): 145-157. DOI: 10.1016/j.clp.2018.09.007.
[1] 徐婷婷, 詹泳池, 王晓东, 刘兴会. 电子胎心监测结果出现正弦波形的胎母输血综合征围生期结局分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 382-389.
[2] 梅娟, 陶旭炜. 弥散性血管内凝血为首发表现先天性肝内门体静脉分流新生儿2例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 322-330.
[3] 张禾璇, 杨雪, 王侣金, 李林洁, 刘兴宇. 新生儿葡萄糖-6-磷酸脱氢酶缺乏症筛查及基因突变特征分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 200-208.
[4] 郑伟军, 郑超, 方一凡, 吴典明, 王翔, 陈飞, 刘明坤. 新生儿急性阑尾炎17例诊治分析并文献回顾[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 291-293.
[5] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[6] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[7] 赵静, 张嘉欣, 高言, 谢席胜. 微小病变肾病的发病机制及治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 207-212.
[8] 孙鼎, 王滨, 陈香美, 陈意志. 热应激肾病的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 170-176.
[9] 贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.
[10] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
[11] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[12] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[13] 厉若男, 宋进, 王玉忠. 带状疱疹后神经痛的发病机制和诊治研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 199-205.
[14] 王可涵, 许涛, 周全红. 围术期谵妄与应激的研究进展[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 45-49.
[15] 陆远欣, 龚莉琳, 曾梦华. 肥胖与非酒精性脂肪肝研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 113-119.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?