切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (05) : 523 -527. doi: 10.3877/cma.j.issn.1673-5250.2022.05.005

专题论坛

肠道菌群失调与新生儿坏死性小肠结肠炎发病机制的研究现状
张非红, 夏斌()   
  1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2022-05-30 修回日期:2022-09-04 出版日期:2022-10-01
  • 通信作者: 夏斌

Research progress on neonatal gut microbiota and pathogenesis of necrotizing enterocolitis

Feihong Zhang, Bin Xia()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-05-30 Revised:2022-09-04 Published:2022-10-01
  • Corresponding author: Bin Xia
  • Supported by:
    National Natural Science Foundation of China(81370738)
引用本文:

张非红, 夏斌. 肠道菌群失调与新生儿坏死性小肠结肠炎发病机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 523-527.

Feihong Zhang, Bin Xia. Research progress on neonatal gut microbiota and pathogenesis of necrotizing enterocolitis[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 523-527.

新生儿出生后,立即开始肠道菌群定植,这一关键过程若被中断或延迟,均可能导致其肠道菌群失调,进而导致新生儿坏死性小肠结肠炎(NEC)发生。肠道菌群失调(数量与种类失调)在新生儿NEC发生、发展过程中的具体作用机制迄今尚未阐明。最新研究发现,新生儿NEC发病前,机体肠道肠杆菌科菌群、梭状芽孢杆菌富集,而厚壁菌门、拟杆菌门细菌数量均减少,这些肠道菌群数量与种类失调,可能在新生儿NEC发病过程中发挥重要作用。笔者拟就新生儿肠道菌群特点、肠道菌群失调与新生儿NEC发病机制的最新研究现状进行阐述。

Gut microbiota colonizes immediately after neonatal birth. The interruption or delay of gut microbiota colonization, resulting in gut microbiota dysbiosis, is a key risk factor for neonatal necrotizing enterocolitis (NEC). The specific mechanism of the occurence of gut microbiota dysbiosis (number and species imbalance) and the development of NEC is still not completely understood yet. Recent studies have found the enrichment of Enterobacteriaceae and Clostridium and the decrease of Firmicutes and Bacteroides before onset of neonatal NEC. The imbalance of number and species of gut microbiota may play an important role in the pathogenesis of neonatal NEC. The author intends to elaborate on the latest researches of characteristics and imbalance of neonatal gut microbiota, and the pathogenesis of neonatal NEC.

[1]
Moschino L, Duci M, Fascetti LF, et al. Optimizing nutritional strategies to prevent necrotizing enterocolitis and growth failure after bowel resection[J]. Nutrients, 2021, 13(2): 340. DOI: 10.3390/nu13020340.
[2]
Raba AA, O′Sullivan A, Miletin J. Pathogenesis of necrotising enterocolitis: the impact of the altered gut microbiota and antibiotic exposure in preterm infants[J]. Acta Paediatr, 2021, 110(2): 433-440. DOI: 10.1111/apa.15559.
[3]
Pammi M, Cope J, Tarr PI, et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and Meta-analysis[J]. Microbiome, 2017, 5(1): 31. DOI: 10.1186/s40168-017-0248-8.
[4]
Thanert R, Keen EC, Dantas G, et al. Necrotizing enterocolitis and the microbiome: current status and future directions[J]. J Infect Dis, 2021, 223(12 Suppl 2): S257-S263. DOI: 10.1093/infdis/jiaa604.
[5]
Lee JK, Hern TL, Ramadas A, et al. Exploring the role of gut bacteria in health and disease in preterm neonates[J]. Int J Environ Res Public Health, 2020, 17(19): 6963. DOI: 10.3390/ijerph17196963.
[6]
Coelho G, Ayres L, Barreto DS, et al. Acquisition of microbiota according to the type of birth: an integrative review[J]. Rev Lat Am Enfermagem, 2021, 29: e3446. DOI: 10.1590/1518.8345.4466.3446.
[7]
Lyons KE, Ryan CA, Dempsey EM, et al. Breast milk, a source of beneficial microbes and associated benefits for infant health[J]. Nutrients, 2020, 12(4): 1039. DOI: 10.3390/nu12041039.
[8]
Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants[J]. Dev Psychobiol, 2019, 61(5): 739-751. DOI: 10.1002/dev.21806.
[9]
Tauchi H, Yahagi K, Yamauchi T, et al. Gut microbiota development of preterm infants hospitalised in intensive care units[J]. Benef Microbes, 2019, 10(6): 641-651. DOI: 10.3920/BM2019.0003.
[10]
Korpela K, Blakstad EW, Moltu SJ, et al. Intestinal microbiota development and gestational age in preterm neonates[J]. Sci Rep, 2018, 8(1): 2453-2459. DOI: 10.1038/s41598-018-20827-x.
[11]
Neu J, Pammi M. Necrotizing enterocolitis: the intestinal microbiome, metabolome and inflammatory mediators[J]. Semin Fetal Neonatal Med, 2018, 23(6): 400-405. DOI: 10.1016/j.siny.2018.08.001.
[12]
Shaw AG, Sim K, Rose G, et al. Premature neonatal gut microbial community patterns supporting an epithelial TLR-mediated pathway for necrotizing enterocolitis[J]. BMC Microbiol, 2021, 21(1): 225. DOI: 10.1186/s12866-021-02285-0.
[13]
Olm MR, Bhattacharya N, Crits-Christoph A, et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria[J]. Sci Adv, 2019, 5(12): e5727. DOI: 10.1126/sciadv.aax5727.
[14]
Neu J. Necrotizing enterocolitis: a multi-omic approach and the role of the microbiome[J]. Dig Dis Sci, 2020, 65(3): 789-796. DOI: 10.1007/s10620-020-06104-w.
[15]
Hackam DJ, Sodhi CP. Bench to bedside - new insights into the pathogenesis of necrotizing enterocolitis[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(7): 468-479. DOI: 10.1038/s41575-022-00594-x.
[16]
Sampah M, Hackam DJ. Dysregulated mucosal immunity and associated pathogeneses in preterm neonates[J]. Front Immunol, 2020, 11: 899. DOI: 10.3389/fimmu.2020.00899.
[17]
Hackam DJ, Sodhi CP. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis[J]. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 229-238. DOI: 10.1016/j.jcmgh.2018.04.001.
[18]
Paradis T, Begue H, Basmaciyan L, et al. Tight junctions as a key for pathogens invasion in intestinal epithelial cells[J]. Int J Mol Sci, 2021, 22(5): 2506. DOI: 10.3390/ijms22052506.
[19]
Hackam DJ, Sodhi CP, Good M. New insights into necrotizing enterocolitis: from laboratory observation to personalized prevention and treatment[J]. J Pediatr Surg, 2019, 54(3): 398-404. DOI: 10.1016/j.jpedsurg.2018.06.012.
[20]
Sampah M, Hackam DJ. Prenatal immunity and influences on necrotizing enterocolitis and associated neonatal disorders[J]. Front Immunol, 2021, 12: 650709. DOI: 10.3389/fimmu.2021.650709.
[21]
Hoang TK, He B, Wang T, et al. Protective effect of Lactobacillus reuteri DSM 17938 against experimental necrotizing enterocolitis is mediated by Toll-like receptor 2[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(2): G231-G240. DOI: 10.1152/ajpgi.00084.2017.
[22]
Pammi M, Hollister E, Neu J. Gut injury and the microbiome in neonates[J]. Clin Perinatol, 2020, 47(2): 369-382. DOI: 10.1016/j.clp.2020.02.010.
[23]
Yuan Y, Ding D, Zhang N, et al. TNF-alpha induces autophagy through ERK1/2 pathway to regulate apoptosis in neonatal necrotizing enterocolitis model cells IEC-6[J]. Cell Cycle, 2018, 17(11): 1390-1402. DOI: 10.1080/15384101.2018.1482150.
[24]
Burgueno JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5): 263-278. DOI: 10.1038/s41575-019-0261-4.
[25]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease[J]. Cell Research, 2020, 30(6): 492-506. DOI: 10.1038/s41422-020-0332-7.
[26]
Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annu Rev Immunol, 2020, 38: 23-48. DOI: 10.1146/annurev-immunol-070119-115104.
[27]
Xiao Z, Liu L, Pei X, et al. A potential probiotic for diarrhea: clostridium tyrobutyricum protects against LPS-induced epithelial dysfunction via IL-22 produced by Th17 cells in the ileum[J]. Front Immunol, 2021, 12: 758227. DOI: 10.3389/fimmu.2021.758227.
[28]
Schönherr-Hellec S, Aires J. Clostridia and necrotizing enterocolitis in preterm neonates[J]. Anaerobe, 2019, 58: 6-12. DOI: 10.1016/j.anaerobe.2019.04.005.
[29]
Schonherr-Hellec S, Klein GL, Delannoy J, et al. Clostridial strain-specific characteristics associated with necrotizing enterocolitis[J]. Appl Environ Microbiol, 2018, 84(7): e02428-17. DOI: 10.1128/AEM.02428-17.
[30]
Cassir N, Grandvuillemin I, Boxberger M, et al. Case report: clostridium neonatale bacteremia in a preterm neonate with necrotizing enterocolitis[J]. Front Pediatr, 2021, 9: 771467. DOI: 10.3389/fped.2021.771467.
[31]
Mihi B, Good M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: the state of the science[J]. Clin Perinatol, 2019, 46(1): 145-157. DOI: 10.1016/j.clp.2018.09.007.
[1] 包艳娟, 杨小红, 杨星海, 潘圣宝, 杨帆, 赵胜. 腹膜后内寄生胎产前和新生儿期的临床与超声影像学特征[J]. 中华医学超声杂志(电子版), 2022, 19(12): 1349-1354.
[2] 谢燕华, 陈伟玲, 唐子鉴, 陶宏伟, 何学智, 黄兵旋, 许娜, 夏焙. 新生儿及小婴儿化脓性髋关节炎的超声诊断:病例系列研究[J]. 中华医学超声杂志(电子版), 2022, 19(12): 1377-1382.
[3] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[4] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[5] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[6] 赵金琦, 杨楠, 宫丽霏, 唐玥, 李璐璐, 杨海河, 孔元原. 2011—2020年北京市小于胎龄儿出生状况分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 278-286.
[7] 陈玉莲, 刘瀚旻. 人体生命早期呼吸系统菌群与肺部微生物组发育特征及早期菌群稳态研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 31-37.
[8] 张雯, 徐宏燕, 张彦春, 刘凯波. 2017—2021年北京市先天性心脏病流行病学资料分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 61-68.
[9] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[10] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[11] 李文捷, 卢弘. 幼年特发性关节炎相关葡萄膜炎的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 40-44.
[12] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[13] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[14] 王敏, 张妍, 王盈熹, 赵龙, 夏书月. 外泌体在慢性阻塞性肺疾病中的作用[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 45-51.
[15] 强光峰, 孟兰兰, 赵静, 牛峰海, 任雪云. 肺部超声评分对呼吸困难新生儿使用有创机械通气的预测价值[J]. 中华诊断学电子杂志, 2023, 11(02): 104-108.
阅读次数
全文


摘要