切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (01) : 31 -37. doi: 10.3877/cma.j.issn.1673-5250.2023.01.005

专题论坛

人体生命早期呼吸系统菌群与肺部微生物组发育特征及早期菌群稳态研究现状
陈玉莲, 刘瀚旻()   
  1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2022-12-07 修回日期:2023-01-14 出版日期:2023-02-01
  • 通信作者: 刘瀚旻

Research progress on respiratory system microflora and development characteristics of lung microbiome and homeostasis of lung microflora in early life

Yulian Chen, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-12-07 Revised:2023-01-14 Published:2023-02-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Regional Innovation and Development Joint Fund Project of National Natural Science Foundation of China(U21A20333)
引用本文:

陈玉莲, 刘瀚旻. 人体生命早期呼吸系统菌群与肺部微生物组发育特征及早期菌群稳态研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 31-37.

Yulian Chen, Hanmin Liu. Research progress on respiratory system microflora and development characteristics of lung microbiome and homeostasis of lung microflora in early life[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(01): 31-37.

人体生命早期呼吸系统菌群的组成(种类与数量)是近年儿童呼吸领域的研究热点之一,越来越多研究提示,人体生命早期呼吸道暴露于细菌环境,是影响肺部免疫系统发育的重要因素。呼吸系统菌群组成,可影响肺功能和呼吸生理,影响机体对呼吸系统病原体及外界刺激的易感性。生命早期是外界环境刺激与微生物组定植的最初暴露期,也是肺发育的关键时期。人体生命早期肺部微生物组发育特征及早期菌群稳态,可能影响肺免疫细胞分化和成熟,若肺定植微生物组失调,可能增加肺感染风险。研究表明,呼吸系统菌群随着肺疾病发生而变化,并且与肺疾病的严重程度有关。因此,探讨肺部微生物组发育特征及早期菌群稳态和宿主相互作用,对研究肺感染疾病发病机制至关重要。笔者拟对人体生命早期呼吸系统菌群组成及其来源,影响人体生命早期肺部微生物组发育特征及早期菌群稳态因素,呼吸系统正常菌群对肺部免疫系统调节作用,以及人体生命早期呼吸系统菌群异常与肺感染疾病等的最新研究进展进行阐述。

The composition (type and quantity) of respiratory system microflora in early life has been one of the research hotspots in the field of children′s respiratory in recent years. More and more studies suggest that respiratory tract exposure to bacteria in early life is an important factor in the development of lung immune system, and the composition of respiratory system microflora can affect the pulmonary functions and respiration physiological functions, so as to regulate the body′s susceptibility to respiratory pathogens and external stimuli. Early life is the initial period of exposure to environmental stimuli and microbial colonization, and is also a critical period for lung development. The developmental characteristics of lung microbiome and homeostasis of lung microflora in early life may affect the differentiation and maturation of lung immune cells, and the imbalance of lung microbiome may increase the risk of lung infection. Studies have shown that respiratory system microflora varies with the occurrence of lung disease and is related to the severity of lung disease. Therefore, it is very important to explore the interaction between developmental characteristics of lung microbiome, homeostasis of lung microflora in early life and the host for the study of pathogenesis of lung infection diseases. The author intends to discuss the composition and origin of respiratory system microflora in early life, factors affecting the developmental characteristics of lung microbiome and homeostasis of lung microflora in early life, regulation effects of normal respiratory system microflora on lung immune system, and the abnormal respiratory system microflora and lung infection diseases in early life.

[1]
饶健. 小鼠肺部微生物组发育特征及早期菌群稳态调节抗病毒免疫功能的机制研究[D]. 北京:中国医学科学院·北京协和医学院,2019: 1-2.
[2]
von Mutius E. Intimate crosstalk in lower airways at the beginning of life[J]. Cell Host Microbe, 2018, 24(6): 758-759. DOI: 10.1016/j.chom.2018.11.014.
[3]
Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease[J]. PLoS Pathog, 2015, 11(7): e1004923. DOI: 10.1371/journal.ppat.1004923.
[4]
Faner R, Sibila O, Agusti A, et al. The microbiome in respiratory medicine: current challenges and future perspectives[J]. Eur Respir J, 2017, 49(4): 1602086. DOI: 10.1183/13993003.02086-2016.
[5]
Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host Microbe, 202027(1):68.e5-78.e5. DOI: 10.1016/j.chom.2019.11.003.
[6]
Permall DL, Pasha AB, Chen XQ, et al. The lung microbiome in neonates[J]. Turk J Pediatr, 2019, 61(6): 821-830. DOI: 10.24953/turkjped.2019.06.001.
[7]
de Steenhuijsen Piters WAA, Binkowska J, Bogaert D. Early life microbiota and respiratory tract infections[J]. Cell Host Microbe, 2020, 28(2): 223-232. DOI: 10.1016/j.chom.2020.07.004.
[8]
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count[J]. Front Immunol, 2022, 13: 1031924. DOI: 10.3389/fimmu.2022.1031924.
[9]
Gallacher DJ, Kotecha S. Respiratory microbiome of new-born infants[J]. Front Pediatr, 2016, 4: 10. DOI: 10.3389/fped.2016.00010.
[10]
Grier A, McDavid A, Wang B, et al. Neonatal gut and respiratory microbiota: coordinated development through time and space[J]. Microbiome, 2018, 6(1): 193. DOI: 10.1186/s40168-018-0566-5.
[11]
Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. DOI: 10.1164/rccm.201407-1240OC.
[12]
Charlson ES, Bittinger K, Chen J, et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts[J]. PLoS One, 2012, 7(9): e42786. DOI: 10.1371/journal.pone.0042786.
[13]
Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease[J]. Expert Rev Respir Med, 2013, 7(3): 245-257. DOI: 10.1586/ers.13.24.
[14]
Lal CV, Travers C, Aghai ZH, et al. The airway microbiome at birth[J]. Sci Rep, 2016, 6: 31023. DOI: 10.1038/srep31023.
[15]
Pattaroni C, Watzenboeck ML, Schneidegger S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host Microbe, 2018, 24(6): 857-865. DOI: 10.1016/j.chom.2018.10.019.
[16]
Thorsen J, Rasmussen MA, Waage J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma[J]. Nat Commun, 2019, 10(1): 5001. DOI: 10.1038/s41467-019-12989-7.
[17]
DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation[J]. PLoS One, 2008, 3(8): e3056. DOI: 10.1371/journal.pone.0003056.
[18]
Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome[J]. Sci Transl Med, 2014, 6(237): 237r-265r. DOI: 10.1126/scitranslmed.3008599.
[19]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26): 11971-11975. DOI: 10.1073/pnas.1002601107.
[20]
Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285): 539-544. DOI: 10.1126/science.aad9378.
[21]
Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease[J]. Nat Rev Microbiol, 2022: 1-14. DOI: 10.1038/s41579-022-00821-x.
[22]
Dickson RP, Erb-Downward JR, Huffnagle GB. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis[J]. Lancet Respir Med, 2014, 2(3): 238-246. DOI: 10.1016/S2213-2600(14)70028-1.
[23]
Mathieu E, Escribano-Vazquez U, Descamps D, et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma[J]. Front Physiol, 2018, 9: 1168. DOI: 10.3389/fphys.2018.01168.
[24]
Segal LN, Clemente JC, Tsay JC, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype[J]. Nat Microbiol, 2016, 1: 16031. DOI: 10.1038/nmicrobiol.2016.31.
[25]
Cui L, Morris A, Huang L, et al. The microbiome and the lung[J]. Ann Am Thorac Soc, 201411(Suppl 4): S227-S232. DOI: 10.1513/AnnalsATS.201402-052PL.
[26]
Schmidt A, Belaaouaj A, Bissinger R, et al. Neutrophil elastase-mediated increase in airway temperature during inflammation[J]. J Cyst Fibros, 2014, 13(6): 623-631. DOI: 10.1016/j.jcf.2014.03.004.
[27]
Garzoni C, Brugger SD, Qi W, et al. Microbial communities in the respiratory tract of patients with interstitial lung disease[J]. Thorax, 2013, 68(12): 1150-1156. DOI: 10.1136/thoraxjnl-2012-202917.
[28]
Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: from protection to predisposition[J]. Sci Transl Med, 2021, 13(576): eaba0501. DOI: 10.1126/scitranslmed.aba0501.
[29]
Nesbitt H, Burke C, Haghi M. Manipulation of the upper respiratory microbiota to reduce incidence and severity of upper respiratory viral infections: a literature review[J]. Front Microbiol, 2021, 12: 713703. DOI: 10.3389/fmicb.2021.713703.
[30]
Wang J, Li F, Sun R, et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages[J]. Nat Commun, 2013, 4: 2106. DOI: 10.1038/ncomms3106.
[31]
Wu BG, Sulaiman I, Tsay JJ, et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae[J]. Am J Respir Crit Care Med, 2021, 203(9): 1099-1111. DOI: 10.1164/rccm.202005-1596OC.
[32]
Stankovic M, Veljovic K, Popovic N, et al. Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of nf-kappaB and MAPK signaling in human bronchial epithelial cells[J]. Int J Mol Sci, 2022, 23(10): 5547. DOI: 10.3390/ijms23105547.
[33]
Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes[J]. Nature, 1996, 383(6603): 787-793. DOI: 10.1038/383787a0.
[34]
Saeedi P, Salimian J, Ahmadi A, et al. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system[J]. Inhal Toxicol, 2015, 27(10): 451-461. DOI: 10.3109/08958378.2015.1070220.
[35]
Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1[J]. Nat Med, 2014, 20(6): 642-647. DOI: 10.1038/nm.3568.
[36]
Yagi K, Huffnagle GB, Lukacs NW, et al. The lung microbiome during health and disease[J]. Int J Mol Sci, 2021, 22(19): 10872. DOI: 10.3390/ijms221910872.
[37]
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance[J]. Microbiome, 2022, 10(1): 165. DOI: 10.1186/s40168-022-01342-8.
[38]
周丹,石芳,刘瀚旻. "新型"支气管肺发育不良生物标志物的研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(4): 357-362. DOI: 10.3877/cma.j.issn.1673-5250.2019.04.001.
[39]
伏洪玲,刘瀚旻. 支气管肺发育不良及肺动脉高压有关信号通路研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(5): 497-505. DOI: 10.3877/cma.j.issn.1673-5250.2022.05.001.
[40]
Dick S, Friend A, Dynes K, et al. A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years[J]. BMJ Open, 2014, 4(11): e6554. DOI: 10.1136/bmjopen-2014-006554.
[41]
Jackson CM, Kaplan AN, Järvinen KM. Environmental exposures may hold the key; Impact of air pollution, greenness, and rural/farm lifestyle on allergic outcomes[J]. Curr Allergy Asthma Rep, 2023, 23(2): 77-91. DOI:10.1007/s11882-022-01061-y.
[42]
Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma[J]. Nat Med, 2020, 26(11): 1766-1775. DOI: 10.1038/s41591-020-1095-x.
[43]
Losol P, Park HS, Song WJ, et al. Association of upper airway bacterial microbiota and asthma: systematic review[J]. Asia Pac Allergy, 2022, 12(3): e32. DOI: 10.5415/apallergy.2022.12.e32.
[44]
O′Connor JB, Mottlowitz MM, Wagner BD, et al. Divergence of bacterial communities in the lower airways of CF patients in early childhood[J]. PLoS One, 2021, 16(10): e257838. DOI: 10.1371/journal.pone.0257838.
[45]
Frayman KB, Wylie KM, Armstrong DS, et al. Differences in the lower airway microbiota of infants with and without cystic fibrosis[J]. J Cyst Fibros, 2019, 18(5): 646-652. DOI: 10.1016/j.jcf.2018.12.003.
[46]
Narang R, Bakewell K, Peach J, et al. Bacterial distribution in the lungs of children with protracted bacterial bronchitis[J]. PLoS One, 2014, 9(9): e108523. DOI: 10.1371/journal.pone.0108523.
[47]
Cuthbertson L, Craven V, Bingle L, et al. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children[J]. PLoS One, 2017, 12(12): e190075. DOI: 10.1371/journal.pone.0190075.
[1] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[2] 吴雪烁, 冯景, 周毅. 乳腺癌组织微生物群特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 305-308.
[3] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[4] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[5] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[6] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[7] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[8] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[9] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[10] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[11] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[12] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[13] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要