切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (01) : 31 -37. doi: 10.3877/cma.j.issn.1673-5250.2023.01.005

专题论坛

人体生命早期呼吸系统菌群与肺部微生物组发育特征及早期菌群稳态研究现状
陈玉莲, 刘瀚旻()   
  1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2022-12-07 修回日期:2023-01-14 出版日期:2023-02-01
  • 通信作者: 刘瀚旻

Research progress on respiratory system microflora and development characteristics of lung microbiome and homeostasis of lung microflora in early life

Yulian Chen, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-12-07 Revised:2023-01-14 Published:2023-02-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Regional Innovation and Development Joint Fund Project of National Natural Science Foundation of China(U21A20333)
引用本文:

陈玉莲, 刘瀚旻. 人体生命早期呼吸系统菌群与肺部微生物组发育特征及早期菌群稳态研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 31-37.

Yulian Chen, Hanmin Liu. Research progress on respiratory system microflora and development characteristics of lung microbiome and homeostasis of lung microflora in early life[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(01): 31-37.

人体生命早期呼吸系统菌群的组成(种类与数量)是近年儿童呼吸领域的研究热点之一,越来越多研究提示,人体生命早期呼吸道暴露于细菌环境,是影响肺部免疫系统发育的重要因素。呼吸系统菌群组成,可影响肺功能和呼吸生理,影响机体对呼吸系统病原体及外界刺激的易感性。生命早期是外界环境刺激与微生物组定植的最初暴露期,也是肺发育的关键时期。人体生命早期肺部微生物组发育特征及早期菌群稳态,可能影响肺免疫细胞分化和成熟,若肺定植微生物组失调,可能增加肺感染风险。研究表明,呼吸系统菌群随着肺疾病发生而变化,并且与肺疾病的严重程度有关。因此,探讨肺部微生物组发育特征及早期菌群稳态和宿主相互作用,对研究肺感染疾病发病机制至关重要。笔者拟对人体生命早期呼吸系统菌群组成及其来源,影响人体生命早期肺部微生物组发育特征及早期菌群稳态因素,呼吸系统正常菌群对肺部免疫系统调节作用,以及人体生命早期呼吸系统菌群异常与肺感染疾病等的最新研究进展进行阐述。

The composition (type and quantity) of respiratory system microflora in early life has been one of the research hotspots in the field of children′s respiratory in recent years. More and more studies suggest that respiratory tract exposure to bacteria in early life is an important factor in the development of lung immune system, and the composition of respiratory system microflora can affect the pulmonary functions and respiration physiological functions, so as to regulate the body′s susceptibility to respiratory pathogens and external stimuli. Early life is the initial period of exposure to environmental stimuli and microbial colonization, and is also a critical period for lung development. The developmental characteristics of lung microbiome and homeostasis of lung microflora in early life may affect the differentiation and maturation of lung immune cells, and the imbalance of lung microbiome may increase the risk of lung infection. Studies have shown that respiratory system microflora varies with the occurrence of lung disease and is related to the severity of lung disease. Therefore, it is very important to explore the interaction between developmental characteristics of lung microbiome, homeostasis of lung microflora in early life and the host for the study of pathogenesis of lung infection diseases. The author intends to discuss the composition and origin of respiratory system microflora in early life, factors affecting the developmental characteristics of lung microbiome and homeostasis of lung microflora in early life, regulation effects of normal respiratory system microflora on lung immune system, and the abnormal respiratory system microflora and lung infection diseases in early life.

[1]
饶健. 小鼠肺部微生物组发育特征及早期菌群稳态调节抗病毒免疫功能的机制研究[D]. 北京:中国医学科学院·北京协和医学院,2019: 1-2.
[2]
von Mutius E. Intimate crosstalk in lower airways at the beginning of life[J]. Cell Host Microbe, 2018, 24(6): 758-759. DOI: 10.1016/j.chom.2018.11.014.
[3]
Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease[J]. PLoS Pathog, 2015, 11(7): e1004923. DOI: 10.1371/journal.ppat.1004923.
[4]
Faner R, Sibila O, Agusti A, et al. The microbiome in respiratory medicine: current challenges and future perspectives[J]. Eur Respir J, 2017, 49(4): 1602086. DOI: 10.1183/13993003.02086-2016.
[5]
Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host Microbe, 202027(1):68.e5-78.e5. DOI: 10.1016/j.chom.2019.11.003.
[6]
Permall DL, Pasha AB, Chen XQ, et al. The lung microbiome in neonates[J]. Turk J Pediatr, 2019, 61(6): 821-830. DOI: 10.24953/turkjped.2019.06.001.
[7]
de Steenhuijsen Piters WAA, Binkowska J, Bogaert D. Early life microbiota and respiratory tract infections[J]. Cell Host Microbe, 2020, 28(2): 223-232. DOI: 10.1016/j.chom.2020.07.004.
[8]
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count[J]. Front Immunol, 2022, 13: 1031924. DOI: 10.3389/fimmu.2022.1031924.
[9]
Gallacher DJ, Kotecha S. Respiratory microbiome of new-born infants[J]. Front Pediatr, 2016, 4: 10. DOI: 10.3389/fped.2016.00010.
[10]
Grier A, McDavid A, Wang B, et al. Neonatal gut and respiratory microbiota: coordinated development through time and space[J]. Microbiome, 2018, 6(1): 193. DOI: 10.1186/s40168-018-0566-5.
[11]
Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. DOI: 10.1164/rccm.201407-1240OC.
[12]
Charlson ES, Bittinger K, Chen J, et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts[J]. PLoS One, 2012, 7(9): e42786. DOI: 10.1371/journal.pone.0042786.
[13]
Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease[J]. Expert Rev Respir Med, 2013, 7(3): 245-257. DOI: 10.1586/ers.13.24.
[14]
Lal CV, Travers C, Aghai ZH, et al. The airway microbiome at birth[J]. Sci Rep, 2016, 6: 31023. DOI: 10.1038/srep31023.
[15]
Pattaroni C, Watzenboeck ML, Schneidegger S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host Microbe, 2018, 24(6): 857-865. DOI: 10.1016/j.chom.2018.10.019.
[16]
Thorsen J, Rasmussen MA, Waage J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma[J]. Nat Commun, 2019, 10(1): 5001. DOI: 10.1038/s41467-019-12989-7.
[17]
DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation[J]. PLoS One, 2008, 3(8): e3056. DOI: 10.1371/journal.pone.0003056.
[18]
Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome[J]. Sci Transl Med, 2014, 6(237): 237r-265r. DOI: 10.1126/scitranslmed.3008599.
[19]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26): 11971-11975. DOI: 10.1073/pnas.1002601107.
[20]
Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285): 539-544. DOI: 10.1126/science.aad9378.
[21]
Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease[J]. Nat Rev Microbiol, 2022: 1-14. DOI: 10.1038/s41579-022-00821-x.
[22]
Dickson RP, Erb-Downward JR, Huffnagle GB. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis[J]. Lancet Respir Med, 2014, 2(3): 238-246. DOI: 10.1016/S2213-2600(14)70028-1.
[23]
Mathieu E, Escribano-Vazquez U, Descamps D, et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma[J]. Front Physiol, 2018, 9: 1168. DOI: 10.3389/fphys.2018.01168.
[24]
Segal LN, Clemente JC, Tsay JC, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype[J]. Nat Microbiol, 2016, 1: 16031. DOI: 10.1038/nmicrobiol.2016.31.
[25]
Cui L, Morris A, Huang L, et al. The microbiome and the lung[J]. Ann Am Thorac Soc, 201411(Suppl 4): S227-S232. DOI: 10.1513/AnnalsATS.201402-052PL.
[26]
Schmidt A, Belaaouaj A, Bissinger R, et al. Neutrophil elastase-mediated increase in airway temperature during inflammation[J]. J Cyst Fibros, 2014, 13(6): 623-631. DOI: 10.1016/j.jcf.2014.03.004.
[27]
Garzoni C, Brugger SD, Qi W, et al. Microbial communities in the respiratory tract of patients with interstitial lung disease[J]. Thorax, 2013, 68(12): 1150-1156. DOI: 10.1136/thoraxjnl-2012-202917.
[28]
Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: from protection to predisposition[J]. Sci Transl Med, 2021, 13(576): eaba0501. DOI: 10.1126/scitranslmed.aba0501.
[29]
Nesbitt H, Burke C, Haghi M. Manipulation of the upper respiratory microbiota to reduce incidence and severity of upper respiratory viral infections: a literature review[J]. Front Microbiol, 2021, 12: 713703. DOI: 10.3389/fmicb.2021.713703.
[30]
Wang J, Li F, Sun R, et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages[J]. Nat Commun, 2013, 4: 2106. DOI: 10.1038/ncomms3106.
[31]
Wu BG, Sulaiman I, Tsay JJ, et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae[J]. Am J Respir Crit Care Med, 2021, 203(9): 1099-1111. DOI: 10.1164/rccm.202005-1596OC.
[32]
Stankovic M, Veljovic K, Popovic N, et al. Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of nf-kappaB and MAPK signaling in human bronchial epithelial cells[J]. Int J Mol Sci, 2022, 23(10): 5547. DOI: 10.3390/ijms23105547.
[33]
Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes[J]. Nature, 1996, 383(6603): 787-793. DOI: 10.1038/383787a0.
[34]
Saeedi P, Salimian J, Ahmadi A, et al. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system[J]. Inhal Toxicol, 2015, 27(10): 451-461. DOI: 10.3109/08958378.2015.1070220.
[35]
Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1[J]. Nat Med, 2014, 20(6): 642-647. DOI: 10.1038/nm.3568.
[36]
Yagi K, Huffnagle GB, Lukacs NW, et al. The lung microbiome during health and disease[J]. Int J Mol Sci, 2021, 22(19): 10872. DOI: 10.3390/ijms221910872.
[37]
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance[J]. Microbiome, 2022, 10(1): 165. DOI: 10.1186/s40168-022-01342-8.
[38]
周丹,石芳,刘瀚旻. "新型"支气管肺发育不良生物标志物的研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(4): 357-362. DOI: 10.3877/cma.j.issn.1673-5250.2019.04.001.
[39]
伏洪玲,刘瀚旻. 支气管肺发育不良及肺动脉高压有关信号通路研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(5): 497-505. DOI: 10.3877/cma.j.issn.1673-5250.2022.05.001.
[40]
Dick S, Friend A, Dynes K, et al. A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years[J]. BMJ Open, 2014, 4(11): e6554. DOI: 10.1136/bmjopen-2014-006554.
[41]
Jackson CM, Kaplan AN, Järvinen KM. Environmental exposures may hold the key; Impact of air pollution, greenness, and rural/farm lifestyle on allergic outcomes[J]. Curr Allergy Asthma Rep, 2023, 23(2): 77-91. DOI:10.1007/s11882-022-01061-y.
[42]
Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma[J]. Nat Med, 2020, 26(11): 1766-1775. DOI: 10.1038/s41591-020-1095-x.
[43]
Losol P, Park HS, Song WJ, et al. Association of upper airway bacterial microbiota and asthma: systematic review[J]. Asia Pac Allergy, 2022, 12(3): e32. DOI: 10.5415/apallergy.2022.12.e32.
[44]
O′Connor JB, Mottlowitz MM, Wagner BD, et al. Divergence of bacterial communities in the lower airways of CF patients in early childhood[J]. PLoS One, 2021, 16(10): e257838. DOI: 10.1371/journal.pone.0257838.
[45]
Frayman KB, Wylie KM, Armstrong DS, et al. Differences in the lower airway microbiota of infants with and without cystic fibrosis[J]. J Cyst Fibros, 2019, 18(5): 646-652. DOI: 10.1016/j.jcf.2018.12.003.
[46]
Narang R, Bakewell K, Peach J, et al. Bacterial distribution in the lungs of children with protracted bacterial bronchitis[J]. PLoS One, 2014, 9(9): e108523. DOI: 10.1371/journal.pone.0108523.
[47]
Cuthbertson L, Craven V, Bingle L, et al. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children[J]. PLoS One, 2017, 12(12): e190075. DOI: 10.1371/journal.pone.0190075.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 王濛, 王華麟, 王鉴, 孙锟. 先天性心脏病宫内诊疗现状与展望[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 481-485.
[3] 詹济玮, 蔡柳春, 温琼娜, 郭石生, 温春妹, 温鹤明. 布地格福联合噻托溴铵治疗AECOPD 的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 823-826.
[4] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[5] 陈嘉艺, 陈佳, 张曦, 张琦. 伴有“反晕征”的IgG4 相关性肺疾病一例并文献复习[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 844-846.
[6] 王丹, 李文思, 成苏杭, 吉泽, 朱祥, 郝春艳. Treg/Th17 及DC 细胞水平在COPD不同疾病进展期的表达及其与预后的关系[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 685-689.
[7] 沈琪乐, 赵勤华, 宫素岗, 刘锦铭, 王岚, 邱宏玲. COPD 稳定期患者血清CC16 蛋白表达与肺功能、肺气肿表型的关系分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 690-695.
[8] 郭璟琪, 魏明言, 刘芳, 李冬凌, 关金平, 李立华. 乙酰半胱氨酸治疗慢性阻塞性肺疾病急性加重期的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 768-772.
[9] 王石林, 叶继章, 丘向艳, 陈桂青, 邹晓敏. 慢性阻塞性肺疾病真菌感染风险早期预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 773-776.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[12] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[13] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[14] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[15] 闫维, 张二明, 张克, 安欣华, 向平超. 北京市石景山区40岁及以上居民早期慢性阻塞性肺疾病异质性及影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 533-540.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?