切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (03) : 249 -255. doi: 10.3877/cma.j.issn.1673-5250.2023.03.001

专题论坛

儿童哮喘易感基因及表观遗传学研究现状
娄丽丽, 刘瀚旻()   
  1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室、西部妇幼医学研究院血管重构与发育缺陷研究室,成都 610041
  • 收稿日期:2023-02-08 修回日期:2023-05-01 出版日期:2023-06-01
  • 通信作者: 刘瀚旻

Current research status of susceptibility genes and epigenetics on childhood asthma

Lili Lou, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Vascular Remodeling and Developmental Defects Research Unit of West China Institute of Women and Children′s Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2023-02-08 Revised:2023-05-01 Published:2023-06-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Special Funds for Basic Scientific Research Business Funds of Central Universities by National Health Commission(SCU2022D022)
引用本文:

娄丽丽, 刘瀚旻. 儿童哮喘易感基因及表观遗传学研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 249-255.

Lili Lou, Hanmin Liu. Current research status of susceptibility genes and epigenetics on childhood asthma[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(03): 249-255.

哮喘(asthma)是儿童中最常见的慢性呼吸系统疾病,以反复发作的咳嗽、气促、喘息等为特征,严重影响儿童的健康、日常生活及学习,给患儿家庭及社会带来沉重的疾病和经济负担。儿童哮喘是环境-免疫-遗传交互的多基因复杂性疾病,发病机制迄今尚未阐明,随着全基因组关联研究(GWAS)等检测手段的进步,实现了遗传学领域大进展,在哮喘易感基因、表观遗传学等方面更好地阐述发病机制,为儿童哮喘基因诊断、靶向治疗等提供一定指导意义。笔者拟就全球儿童哮喘发病率概述、哮喘患儿的分子表型、易感基因、相关表观遗传学修饰的最新研究进展进行阐述。

Asthma is the most common chronic respiratory diseases in children, characterized by repeated cough, shortness of breath, wheezing, etc., which seriously affects children′s health, daily life and learning, and brings heavy disease and economic burden to families and society. With the advancement of genome-wide association studies (GWAS), great progresses have been made at the genetic level, and its pathogenesis has been better elaborated in asthma susceptibility genes and epigenetics, providing guidance for gene diagnosis and targeted therapy. The author intends to elaborate on the global incidence of childhood asthma, the latest research status of molecular phenotypes, susceptibility genes, and epigenetic modifications in children with asthma.

[1]
Global burden of chronic respiratory diseases and risk factors, 1990-2019: an update from the global burden of disease study 2019[J]. EC linical Med, 2023, 59: 101936. DOI: 10.1016/j.eclinm.2023.101936
[2]
全国儿科哮喘协作组,中国疾病预防控制中心环境与健康相关产品安全所. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志2013, 51(10): 729-35. DOI: 10.3760/cma.j.issn.0578-1310.2013.10.003.
[3]
Dijk FN, de Jongste JC, Postma DS, et al. Genetics of onset of asthma[J]. Curr Opin Allergy Clin Immunol, 2013, 13(2): 193-202. DOI: 10.1097/ACI.0b013e32835eb707.
[4]
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15. DOI: 10.1007/s00281-020-00785-1.
[5]
全国儿童哮喘防治协作组,陈再历,陈育智,等. 中国城区儿童哮喘患病率调查[J].中华儿科杂志2003, 41(2): 123-127. DOI: 10.3760/cma.j.issn.0578-1310.2003.02.116.
[6]
Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). Eur Respir J, 1996, 9(4): 687-95. DOI: 10.1183/09031936.96.09040687.
[7]
Ellwood P, Asher MI, Billo NE, et al. The Global Asthma Network rationale and methods for Phase Ⅰ global surveillance: prevalence, severity, management and risk factors[J]. Eur Respir J, 2017, 49(1). DOI: 10.1183/13993003.01605-2016.
[8]
von Mutius E, Smits HH. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention[J]. Lancet, 2020, 396(10254): 854-866. DOI: 10.1016/s0140-6736(20)31861-4.
[9]
Thomsen SF, Duffy DL, Kyvik KO, er al. Genetic influence on the age at onset of asthma: a twin study[J]. J Allergy Clin Immunol, 2010, 126(3): 626-630. DOI: 10.1016/j.jaci.2010.06.017.
[10]
Hizawa N, Yamaguchi E, Konno S, et al. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma[J]. Am J Respir Crit Care Med, 2002166(5): 686-690. DOI: 10.1164/rccm.200202-090OC.
[11]
Granell R, Curtin JA, Haider S, et al. A Meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing[J]. Elife, 2023, 12. DOI: 10.7554/eLife.84315.
[12]
Amelink M, de Groot JC, de Nijs SB, et al. Severe adult-onset asthma: a distinct phenotype[J]. J Allergy Clin Immunol, 2013, 132(2): 336-341. DOi: 10.1016/j.jaci.2013.04.052.
[13]
Walker C, Bode E, Boer L, et al. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage[J]. Am Rev Respir Dis, 1992, 146(1): 109-15. DOI: 10.1164/ajrccm/146.1.109.
[14]
杜文,刘春涛. 支气管哮喘的表型[J].中华临床免疫和变态反应杂志2022, 16(3): 287-91. DOI: 10.3969/j.issn.1673-8705.2022.03.011.
[15]
Wang F, He XY, Baines KJ, et al. Different inflammatory phenotypes in adults and children with acute asthma[J]. Eur Respir J, 2011, 38(3): 567-574. DOI: 10.1183/09031936.00170110.
[16]
Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids[J]. Proc Natl Acad Sci U S A, 2007, 104(40): 15858-15863. DOI: 10.1073/pnas.0707413104.
[17]
Maison N, Omony J, Illi S, et al. T2-high asthma phenotypes across lifespan[J]. Eur Respir J, 2022, 60(3). DOI: 10.1183/13993003.02288-2021.
[18]
Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation[J]. Nature, 2015, 526(7571): 68-74. DOI: 10.1038/nature15393.
[19]
Mammen JR, Arcoleo K. Understanding the genetics of asthma and implications for clinical practice[J]. J Am Assoc Nurse Pract, 2019, 31(7): 384-387. DOI: 10.1097/jxx.0000000000000246.
[20]
Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma[J]. Nature, 2007, 448(7152): 470-473. DOI: 10.1038/nature06014.
[21]
Zhuang LL, Huang BX, Feng J, et al. All-trans retinoic acid modulates ORMDL3 expression via transcriptional regulation[J]. PLoS One, 2013, 8(10): e77304. DOI: 10.1371/journal.pone.0077304.
[22]
Yu X, Yu C, Ren Z, et al. Genetic variants of 17q21 are associated with childhood-onset asthma and related phenotypes in a northeastern Han Chinese population: a case-control study[J]. Tissue Antigens, 2014, 83(5): 330-336. DOI: 10.1111/tan.12342.
[23]
Torgerson DG, Ampleford EJ, Chiu GY, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations[J]. Nat Genet, 2011, 43(9): 887-892. DOI: 10.1038/ng.888.
[24]
Li X, Christenson SA, Modena B, et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways[J]. J Allergy Clin Immunol, 2021, 147(3): 894-909. DOI: 10.1016/j.jaci.2020.07.030.
[25]
Al-Shami A, Spolski R, Kelly J, et al. A role for TSLP in the development of inflammation in an asthma model[J]. J Exp Med, 2005, 202(6): 829-39. DOI: 10.1084/jem.20050199.
[26]
Harada M, Hirota T, Jodo AI, et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells[J]. Am J Respir Cell Mol Biol, 2009, 40(3): 368-74. DOI: 10.1165/rcmb.2008-0041OC.
[27]
Demenais F, Margaritte-Jeannin P, Barnes KC, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks[J]. Nat Genet, 2018, 50(1): 42-53. DOI: 10.1038/s41588-017-0014-7.
[28]
Pividori M, Schoettler N, Nicolae DL, et al. Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies[J]. Lancet Respir Med, 2019, 7(6): 509-522. DOI: 10.1016/s2213-2600(19)30055-4.
[29]
DeVries A, Vercelli D. Epigenetic mechanisms in asthma[J]. Ann Am Thorac Soc, 2016, 13 Suppl 1(Suppl 1): S48- S50. DOI: 10.1513/AnnalsATS.201507-420MG.
[30]
Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advancements[J]. Curr Allergy Asthma Rep, 2012, 12(3): 211-220. DOI: 10.1007/s11882-012-0257-4.
[31]
Bae DJ, Jun JA, Chang HS, et al. Epigenetic changes in asthma: role of DNA CpG methylation[J]. Tuberc Respir Dis (Seoul), 2020, 83(1): 1-13. DOI: 10.4046/trd.2018.0088.
[32]
Hudon Thibeault AA, Laprise C. Cell-specific DNA methylation signatures in asthma. genes (Basel), 2019, 10(11): 932. DOI: 10.3390/genes10110932.
[33]
Forno E, Wang T, Qi C, et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study[J]. Lancet Respir Med, 2019, 7(4): 336-346. DOI: 10.1016/s2213-2600(18)30466-1.
[34]
Xu CJ, Söderhäll C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis[J]. Lancet Respir Med, 2018, 6(5): 379-388. DOI: 10.1016/s2213-2600(18)30052-3.
[35]
冯玲,刘毅,许玉竹,等. 甲基化修饰与支气管哮喘的研究进展[J].国际呼吸杂志202141(1): 58-62. DOI: 10.3760/cma.j.cn131368-20200602-00466.
[36]
Lin AH, Shang Y, Mitzner W, et al. Aberrant DNA methylation of phosphodiesterase[corrected]4D alters airway smooth muscle cell phenotypes[J]. Am J Respir Cell Mol Biol, 2016, 54(2): 241-249. DOI: 10.1165/rcmb.2015-0079OC.
[37]
Baccarelli A, Rusconi F, Bollati V, et al. Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma[J]. Epigenomics, 2012, 4(1): 91-100. DOI: 10.2217/epi.11.106.
[38]
Larouche M, Gagné-Ouellet V, Boucher-Lafleur AM, et al. Methylation profiles of IL33 and CCL26 in bronchial epithelial cells are associated with asthma[J]. Epigenomics, 2018, 10(12): 1555-1568. DOI: 10.2217/epi-2018-0044.
[39]
Alaskhar Alhamwe B, Khalaila R, Wolf J, et al. Histone modifications and their role in epigenetics of atopy and allergic diseases[J]. Allergy Asthma Clin Immunol, 2018, 14: 39. DOI: 10.1186/s13223-018-0259-4.
[40]
Brook PO, Perry MM, Adcock IM, et al. Epigenome-modifying tools in asthma[J]. Epigenomics, 2015, 7(6): 1017-1032. DOI: 10.2217/epi.15.53.
[41]
Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells[J]. Immunity, 2009, 30(1): 155-167. DOI: 10.1016/j.immuni.2008.12.009.
[42]
Grausenburger R, Bilic I, Boucheron N, et al. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production[J]. J Immunol, 2010, 185(6): 3489-3497. DOI: 10.4049/jimmunol.0903610.
[43]
Tian M, Zhou Y, Jia H, et al. The clinical significance of changes in the expression levels of microRNA-1 and inflammatory factors in the peripheral blood of children with acute-stage asthma[J]. Biomed Res Int, 2018, 2018: 7632487. DOI: 10.1155/2018/7632487.
[44]
Singh PB, Pua HH, Happ HC, et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation[J]. J Exp Med, 2017, 214(12): 3627-3643. DOI: 10.1084/jem.20170545.
[45]
Svitich OA, Sobolev VV, Gankovskaya LV, et al. The role of regulatory RNAs (miRNAs) in asthma[J]. Allergol Immunopathol (Madr), 2018, 46(2): 201-205. DOI: 10.1016/j.aller.2017.09.015.
[46]
Elbehidy RM, Youssef DM, El-Shal AS, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children[J]. Mol Immunol, 2016, 71: 107-114. DOI: 10.1016/j.molimm.2015.12.015.
[1] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[2] 王聪, 李云涛, 唐甜甜, 王鑫蕊, 吕鑫, 范志刚. 多基因检测对激素受体阳性、HER-2阴性乳腺癌新辅助化疗疗效预测的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 292-296.
[3] . 美国临床肿瘤学会关于乳腺癌胚系基因检测的相关建议[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 255-255.
[4] 刘世佳, 陶新楠, 史晋宇, 吕文豪, 张亚芬. 乳酸脱氢酶A在乳腺癌中的作用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(03): 175-179.
[5] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[6] 王莉, 曹蕾, 王亚丹, 张伟. Krabbe病1例临床分析并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 339-345.
[7] 刘清, 汪志凌. 肠道真菌与儿童炎症性肠病[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 172-178.
[8] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[9] 王欢欢, 郑少祥, 郝金锦, 陈文亮. 胃癌分子分型的研究进展及相关联系[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 229-234.
[10] 白若靖, 郭军. 维生素D对肺部疾病临床意义的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 659-662.
[11] 陈华萍, 陈晓龙, 胡明冬. 难治性哮喘的发病机制及诊治进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 144-147.
[12] 李任远, 梁桂宁, 于馨洋, 张莹. 基因检测及胚胎植入前单基因遗传学检测在优生优育中的作用[J/OL]. 中华产科急救电子杂志, 2024, 13(02): 117-120.
[13] 张成惠, 闫中瑞, 盛志强, 袁嫣然. 脑肌酸缺乏症诊断与治疗研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 270-275.
[14] 赵超, 史帝, 王暖, 陈国芳. 肯尼迪病合并血清抗体阴性重症肌无力一例[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 236-240.
[15] 扈姝琴, 许红燕, 曹丹, 丁亚艳. 云平台视频管理在患儿重症哮喘中的应用及对应对方式的影响研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 218-223.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?