切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (01) : 7 -14. doi: 10.3877/cma.j.issn.1673-5250.2021.01.002

所属专题: 文献

专题论坛

新生儿急性肾损伤生物标志物研究现状
王惠颖, 苏敏(), 高翔羽   
  • 收稿日期:2020-09-11 修回日期:2021-01-09 出版日期:2021-02-01
  • 通信作者: 苏敏

Current research status on biomarkers of neonatal acute kidney injury

Huiying Wang, Min Su(), Xiangyu Gao   

  • Received:2020-09-11 Revised:2021-01-09 Published:2021-02-01
  • Corresponding author: Min Su
  • Supported by:
    Project of Jiangsu Youth Medical Talents(QNRC2016384)
引用本文:

王惠颖, 苏敏, 高翔羽. 新生儿急性肾损伤生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(01): 7-14.

Huiying Wang, Min Su, Xiangyu Gao. Current research status on biomarkers of neonatal acute kidney injury[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(01): 7-14.

新生儿急性肾损伤(AKI)是指由于各种原因引起的肾功能在短时间内受到损害,新生儿呈现血容量减少性休克、缺氧、低体温等多种病理状态,血清肌酐水平急性和可逆性增高,伴或不伴尿量减少,水和电解质紊乱、酸碱失衡和代谢废物堆积。AKI表现隐匿,该病新生儿易被临床漏诊。由于AKI新生儿特殊的病理生理特点,使其与成年人AKI患者差异较大,目前临床不断改进的成年人AKI诊断标准,并不适用于临床诊断新生儿AKI。因此,临床需要新型肾损伤生物标志物,对新生儿AKI进行早期预测和诊断。目前可反映肾小管及肾小球损伤,有助于新生儿AKI诊断的新型生物标志物包括:胱抑素C(Cys-C)、中性粒细胞明胶酶相关脂质运载蛋白(NGAL)、肾脏损伤分子(KIM)-1、β2微球蛋白(β2-MG)、α1微球蛋白(α1-MG)、N-乙酰-β-D氨基葡萄糖苷酶(NAG)、肝型脂肪酸结合蛋白(L-FABP)、神经轴突导向因子(Netrin)-1、表皮生长因子(EGF)、白细胞介素(IL)-18、谷胱甘肽-S-转移酶(GST)及β-微量蛋白(BTP)等。在众多预测新生儿AKI的新型生物标志物中,应用相对较多及预测效果较佳的生物标志物是尿、血清Cys-C,尿、血清NGAL和尿KIM-1等,在对AKI新生儿进行早期预测、辅助诊断等方面,均优于血清肌酐及尿量检测。但是,上述新型生病标志物的"正常值"大多受新生儿出生胎龄、体重及其检测时日龄与是否合并全身感染等多种因素影响。这些因素均可降低其预测新生儿AKI的敏感度和特异度。联合检测多种生物标志物预测新生儿AKI,虽然降低了预测特异度,但是可以提高预测敏感度。

Neonatal acute kidney injury (AKI) refers to which kidney function is impaired for a variety of reasons in a short term. The neonates with AKI present a variety of pathological states, such as hypovolemic shock, hypoxia, hypothermia and so on, accompanied by an acute and reversible increment in serum creatinine level associated or not with a reduction in urine output, and resulting in derangements in water-electrolyte balance, acid-base and metabolic waste clearance. The manifestation of AKI is latent, so the neonates with AKI are easily miss diagnosed by clinics. The special pathophysiological characteristics of neonates with AKI are quite different from adult patients with AKI. Currently, the continuously improved diagnostic criteria for adult AKI are not suitable for diagnosis of neonates with AKI. Therefore, new biomarkers of kidney injury are needed for early prediction and auxiliary diagnosis of neonatal AKI. At present, the new biomarkers that can reflect renal tubular, glomerular injury and contribute to diagnosis of neonatal AKI include: cystatin C (Cys-C), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule (KIM)-1, β2-microglobulin (β2-MG), α1-microglobulin (α1-MG), N-acetyl-β-D-glucosaminidase (NAG), liver-type fatty acid-binding protein (L-FABP), axon guidance factor netrin (Netrin)-1, epidermal growth factor (EGF), interleukin (IL)-18, glutathione-S-transferase (GST) and β-trace protein (BTP), etc.. Among many new biomarkers for predicting neonatal AKI, the biomarkers which are more and better applied in clinic are urine or serum Cys-C, urine or serum NGAL, and urine KIM-1. In terms of early prediction and auxiliary diagnosis of neonatal AKI, they perform better than the detection of serum creatinine and urine output. However, their " normal value" is largely affected by many factors, such as gestational age, birth weight, postnatal age and systemic infection of newborns. These factors can reduce the sensitivity and specificity of predicting neonatal AKI. When multiple biomarkers are combined to predict neonatal AKI, the sensitivity can be improved in spite of reduced specificity of prediction.

[45]
Song Y, Sun S, Yu Y, et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for renal injury in asphyxiated preterm infants[J]. Exp Ther Med, 2017, 13(4): 1245-1248. DOI: 10.3892/etm.2017.4107.
[46]
Elmas AT, Karadag A, Tabel Y, et al. Analysis of urine biomarkers for early determination of acute kidney injury in non-septic and non-asphyxiated critically ill preterm neonates[J]. J Matern Fetal Neonatal Med, 2017, 30(3): 302-308. DOI: 10.3109/14767058.2016.1171311.
[47]
和东阳,张迎辉,吴跃伟. 尿胱抑素C、肾损伤分子-1及中性粒细胞明胶酶相关脂质运载蛋白在高胆红素血症早产儿早期肾损伤诊断中的价值[J]. 新乡医学院学报,2018, 35(5): 385-388, 392. DOI: 10.7683/xxyxyxb.2018.05.007.
[1]
Sweetman DU. Neonatal acute kidney injury - severity and recovery prediction and the role of serum and urinary biomarkers[J]. Early Hum Dev, 2017, 105(1): 57-61. DOI: 10.1016/j.earlhumdev.2016.12.006.
[2]
Shalaby MA, Sawan ZA, Nawawi E, et al. Incidence, risk factors, and outcome of neonatal acute kidney injury: a prospective cohort study[J]. Pediatr Nephrol, 2018, 33(9): 1617-1624. DOI: 10.1007/s00467-018-3966-7.
[3]
Askenazi DJ. AWAKEN-Ing a new frontier in neonatal nephrology[J]. Front Pediatr, 2020, 8(1): 21. DOI: 10.3389/fped.2020.00021.
[4]
Cleper R, Shavit I, Blumenthal D, et al. Neonatal acute kidney injury: recording rate, course, and outcome: one center experience[J]. J Matern Fetal Neonatal Med, 2019, 32(20): 3379-3385. DOI: 10.1080/14767058.2018.1463985.
[5]
Velazquez DM, Reidy KJ, Sharma M, et al. The effect of hemodynamically significant patent ductus arteriosus on acute kidney injury and systemic hypertension in extremely low gestational age newborns[J]. J Matern Fetal Neonatal Med, 2019, 32(19): 3209-3214. DOI: 10.1080/14767058.2018.1460349.
[6]
Nada A, Bonachea EM, Askenazi DJ. Acute kidney injury in the fetus and neonate[J]. Semin Fetal Neonatal Med, 2017, 22(2): 90-97. DOI: 10.1016/j.siny.2016.12.001.
[7]
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204-R212. DOI: 10.1186/cc2872.
[8]
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2): R31. DOI: 10.1186/cc5713.
[9]
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): C179-C184. DOI: 10.1159/000339789.
[10]
Go H, Momoi N, Kashiwabara N, et al. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants[J]. PLoS One, 2018, 13(5): e0196721. DOI: 10.1371/journal.pone.0196721.
[11]
Kandasamy Y, Rudd D, Smith R. The relationship between body weight, cystatin C and serum creatinine in neonates[J]. J Neonatal Perinatal Med, 2017, 10(4): 419-423. DOI: 10.3233/NPM-171719.
[12]
Kasamatsu A, Ohashi A, Tsuji S, et al. Prediction of urine volume soon after birth using serum cystatin C[J]. Clin Exp Nephrol, 2016, 20(5): 764-769. DOI: 10.1007/s10157-015-1215-y.
[13]
Kastl JT. Renal function in the fetus and neonate - the creatinine enigma[J]. Semin Fetal Neonatal Med, 2017, 22(2): 83-89. DOI: 10.1016/j.siny.2016.12.002.
[14]
Muhari-Stark E, Burckart GJ. Glomerular filtration rate estimation formulas for pediatric and neonatal use[J]. J Pediatr Pharmacol Ther, 2018, 23(6): 424-431. DOI: 10.5863/1551-6776-23.6.424.
[15]
Filler G, Guerrero-Kanan R, Alvarez-Elías AC. Assessment of glomerular filtration rate in the neonate: is creatinine the best tool?[J]. Curr Opin Pediatr, 2016, 28(2): 173-179. DOI: 10.1097/MOP.0000000000000318.
[16]
Parmaksιz G, Noyan A, Dursun H, et al. Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP[J]. Pediatr Nephrol, 2016, 31(1): 97-103. DOI: 10.1007/s00467-015-3194-3.
[17]
DeFreitas MJ, Seeherunvong W, Katsoufis CP, et al. Longitudinal patterns of urine biomarkers in infants across gestational ages[J]. Pediatr Nephrol, 2016, 31(7): 1179-1188. DOI: 10.1007/s00467-016-3327-3.
[18]
Sweetman DU, Onwuneme C, Watson WR, et al. Renal function and novel urinary biomarkers in infants with neonatal encephalopathy[J]. Acta Paediatr, 2016, 105(11): e513-e519. DOI: 10.1111/apa.13555.
[19]
Schrezenmeier EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury-pathophysiological basis and clinical performance[J]. Acta Physiol (Oxf), 2017, 219(3): 554-572. DOI: 10.1111/apha.12764.
[20]
Askenazi DJ, Koralkar R, Patil N, et al. Acute kidney injury urine biomarkers in very low-birth-weight infants[J]. Clin J Am Soc Nephrol, 2016, 11(9): 1527-1535. DOI: 10.2215/CJN.13381215.
[21]
Madise-Wobo AD, Gbelee OH, Solarin A, et al. Serum cystatin C levels in healthy Nigerian neonates: is there a need for normative values in Nigerian babies?[J]. Saudi J Kidney Dis Transpl, 2017, 28(6): 1247-1255. DOI: 10.4103/1319-2442.220881.
[22]
Yang Y, Li SJ, Pan JJ, et al. Reference values for serum cystatin C in very low-birthweight infants: from two centres of China[J]. J Paediatr Child Health, 2018, 54(3): 284-288. DOI: 10.1111/jpc.13732.
[23]
Nakhjavan-Shahraki B, Yousefifard M, Ataei N, et al. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and Meta-analysis[J]. BMC Nephrol, 2017, 18(1): 120. DOI: 10.1186/s12882-017-0539-0.
[24]
何必子,刘登礼,孙秋凤,等. 新生儿高胆红素血症与肾损伤的相关性研究[J]. 中国新生儿科杂志,2016, 31(6): 454-456. DOI: 10.3969/j.issn.1673-6710.2016.06.013.
[25]
Zhang D, Gao L, Ye H, et al. Impact of thyroid function on cystatin C in detecting acute kidney injury: a prospective, observational study[J]. BMC Nephrol, 2019, 20(1): 41. DOI: 10.1186/s12882-019-1201-9.
[26]
Deng Y, Wang L, Hou Y, et al. The influence of glycemic status on the performance of cystatin C for acute kidney injury detection in the critically ill[J]. Ren Fail, 2019, 41(1): 139-149. DOI: 10.1080/0886022X.2019.1586722.
[27]
Khosravi N, Zadkarami M, Chobdar F, et al. The value of urinary cystatin C level to predict neonatal kidney injury[J]. Curr Pharm Des, 2018, 24(25): 3002-3004. DOI: 10.2174/1381612824666180918100819.
[28]
Nakashima T, Inoue H, Fujiyoshi J, et al. Longitudinal analysis of serum cystatin C for estimating the glomerular filtration rate in preterm infants[J]. Pediatr Nephrol, 2016, 31(6): 983-989. DOI: 10.1007/s00467-015-3309-x.
[29]
Abdelaal NA, Shalaby SA, Khashana AK, et al. Serum cystatin C as an earlier predictor of acute kidney injury than serum creatinine in preterm neonates with respiratory distress syndrome[J]. Saudi J Kidney Dis Transpl, 2017, 28(5): 1003-1014. DOI: 10.4103/1319-2442.215148.
[30]
El-Gammacy TM, Shinkar DM, Mohamed NR, et al. Serum cystatin C as an early predictor of acute kidney injury in preterm neonates with respiratory distress syndrome[J]. Scand J Clin Lab Invest, 2018, 78(5): 352-357. DOI: 10.1080/00365513.2018.1472803.
[31]
Zhang Y, Zhang B, Wang D, et al. Evaluation of novel biomarkers for early diagnosis of acute kidney injury in asphyxiated full-term newborns: a case-control study[J]. Med Princ Pract, 2020, 29(3): 285-291. DOI: 10.1159/000503555.
[32]
Kamianowska M, Wasilewska A, Szczepański M, et al. Health term-born girls had higher levels of urine neutrophil gelatinase-associated lipocalin than boys during the first postnatal days[J]. Acta Paediatr, 2016, 105(9): 1105-1108. DOI: 10.1111/apa.13508.
[33]
Hanna M, Brophy PD, Giannone PJ, et al. Early urinary biomarkers of acute kidney injury in preterm infants[J]. Pediatr Res, 2016, 80(2): 218-223. DOI: 10.1038/pr.2016.70.
[34]
Bellos I, Fitrou G, Daskalakis G, et al. Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and Meta-analysis[J]. Eur J Pediatr, 2018, 177(10): 1425-1434. DOI: 10.1007/s00431-018-3221-z.
[35]
Levin-Schwartz Y, Curtin P, Svensson K, et al. Length of gestation and birth weight are associated with indices of combined kidney biomarkers in early childhood[J]. PLoS One, 2019, 14(12): e0227219. DOI: 10.1371/journal.pone.0227219.
[36]
Sellmer A, Bech BH, Bjerre JV, et al. Urinary neutrophil gelatinase-associated lipocalin in the evaluation of patent ductus arteriosus and AKI in very preterm neonates: a cohort study[J]. BMC Pediatr, 2017, 17(1): 7. DOI: 10.1186/s12887-016-0761-0.
[37]
Baumert M, Surmiak P, Więcek A, et al. Serum NGAL and copeptin levels as predictors of acute kidney injury in asphyxiated neonates[J]. Clin Exp Nephrol, 2017, 21(4): 658-664. DOI: 10.1007/s10157-016-1320-6.
[38]
Kisiel A, Roszkowska-Blaim M, Pańczyk-Tomaszewska M, et al. Effect of perinatal risk factors on neutrophil gelatinase-associated lipocalin (NGAL) level in umbilical and peripheral blood in neonates[J]. Cent Eur J Immunol, 2017, 42(3): 274-280. DOI: 10.5114/ceji.2017.70970.
[39]
曹晓燕,张惠荣,章伟,等. 尿神经导向因子-1和肾损伤分子-1对窒息后新生儿急性肾损伤的诊断价值探讨[J]. 中国当代儿科杂志,2016, 18(1): 24-28. DOI: 10.7499/j.issn.1008-8830.2016.01.006.
[40]
Cheng B, Jin Y, Liu G, et al. Urinary N-acetyl-beta-D-glucosaminidase as an early marker for acute kidney injury in full-term newborns with neonatal hyperbilirubinemia[J]. Dis Markers, 2014, 2014: 315843. DOI: 10.1155/2014/315843.
[41]
Kamphuis L, Bouw MP, Roelofs HM, et al. Tubular injury biomarkers to detect gentamicin-induced acute kidney injury in the neonatal intensive care unit[J]. Am J Perinatol, 2016, 33(2): 180-187. DOI: 10.1055/s-0035-1563714.
[42]
Oncel MY, Canpolat FE, Arayici S, et al. Urinary markers of acute kidney injury in newborns with perinatal asphyxia[J]. Ren Fail, 2016, 38(6): 882-888. DOI: 10.3109/0886022X.2016.1165070.
[43]
Stojanović VD, Barišić NA, Radovanović TD, et al. Serum glutathione S-transferase Pi as predictor of the outcome and acute kidney injury in premature newborns[J]. Pediatr Nephrol, 2018, 33(7): 1251-1256. DOI: 10.1007/s00467-018-3910-x.
[44]
Shin SY, Ha JY, Lee SL, et al. Increased urinary neutrophil gelatinase-associated lipocalin in very-low-birth-weight infants with oliguria and normal serum creatinine[J]. Pediatr Nephrol, 2017, 32(6): 1059-1065. DOI: 10.1007/s00467-016-3572-5.
[1] 赵敏, 施依璐, 段莎莎, 王雅皙, 赵捷, 赵海玥, 张璐, 白天昊, 张小杉. RGD微泡介导高频超声造影对类风湿性关节炎滑膜新生血管的定量评估[J]. 中华医学超声杂志(电子版), 2023, 20(05): 530-536.
[2] 李博, 孔德璇, 彭芳华, 吴文瑛. 超声在胎儿肺静脉异位引流诊断中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(04): 437-441.
[3] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[4] 杨皓媛, 龚杰, 邹青伟, 阮航. 哮喘孕妇的母婴不良妊娠结局研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 522-529.
[5] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[6] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[7] 胡诤贇, 史建伟, 申建伟, 王冰, 蒋春苗, 刘冲. 基于机器学习鉴定早产儿支气管肺发育不良的关键基因[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 446-454.
[8] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[9] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[10] 周美岑, 王华, 母得志. 早产儿疫苗预防接种及时性[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 261-266.
[11] 李敏, 熊菲. 母乳成分及其影响因素的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 267-272.
[12] 赵金琦, 杨楠, 宫丽霏, 唐玥, 李璐璐, 杨海河, 孔元原. 2011—2020年北京市小于胎龄儿出生状况分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 278-286.
[13] 陈樱, 陈艳莉. 高龄孕妇心率变异性原因及围产结局分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 295-301.
[14] 张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.
[15] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要