切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2019, Vol. 15 ›› Issue (06) : 605 -611. doi: 10.3877/cma.j.issn.1673-5250.2019.06.001

所属专题: 文献

专题论坛

上皮性卵巢癌的病理及分子诊断
赵倩颖1, 郄明蓉1,()   
  1. 1. 四川大学华西第二医院妇产科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2019-01-09 修回日期:2019-05-02 出版日期:2019-12-01
  • 通信作者: 郄明蓉

Pathological and molecular diagnosis of epithelial ovarian cancer

Qianying Zhao1, Mingrong Qie1,()   

  1. 1. Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2019-01-09 Revised:2019-05-02 Published:2019-12-01
  • Corresponding author: Mingrong Qie
  • About author:
    Corresponding author: Qie Mingrong, Email:
  • Supported by:
    National Natural Science Foundation of China(61741511)
引用本文:

赵倩颖, 郄明蓉. 上皮性卵巢癌的病理及分子诊断[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 605-611.

Qianying Zhao, Mingrong Qie. Pathological and molecular diagnosis of epithelial ovarian cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2019, 15(06): 605-611.

上皮性卵巢癌(EOC)就其病理学特征而言,可被分为Ⅰ、Ⅱ型EOC,二者在肿瘤来源、恶性表型方面均有所不同。Ⅰ、Ⅱ型EOC在病理学形态、临床特征、分子表型等方面,均体现出极高的异质性特点。随着二代基因测序技术对EOC分子特征数据的积累,深化了临床对EOC生物学行为的认识。综合病理及分子特征进行诊断,可能为EOC提供更加高效、精准的筛查和治疗策略。笔者拟就EOC的病理及分子诊断机制,分子诊断技术的发展现状,以及在EOC筛查和治疗应用中的最新研究进展进行阐述。

Epithelial ovarian cancer (EOC) is categorized into two pathological subtypes, such as EOC Ⅰ and Ⅱ subtype, with distinct origins and malignant phenotypes. However, EOC presents heterogeneity in diverse aspects like pathological morphology, clinical feature, molecular phenotype, etc.. With increasing data based on second-generation gene sequencing technology, we have deepened our understanding of the biological behaviors of EOC. The comprehensive diagnosis of pathological and molecular characteristics may provide more efficient and accurate screening and treatment strategies for EOC. This paper focuses on the development of EOC′s pathological and molecular diagnosis mechanism and the technology of molecular diagnosis, as well as the latest research progress in the application of EOC screening and treatment.

[1]
Shih IeM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis[J]. Am J Pathol, 2004, 164(5): 1511-1518.
[2]
Schmeler KM, Tao X, Frumovitz M, et al. Prevalence of lymph node metastasis in primary mucinous carcinoma of the ovary[J]. Obstet Gynecol, 2010, 116(2): 269-273.
[3]
Kurman RJ, Shih IeM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded[J]. Am J Pathol, 2016, 186(4): 733-747.
[4]
Kurman RJ, Carcangiu ML, Herrington S, et al. WHO classification of tumours of female reproductive organs[M]. 4th ed. Lyon, France: IARC, 2014: 15-23.
[5]
Blagden SP. Harnessing pandemonium: the clinical implications of tumor heterogeneity in ovarian cancer[J]. Front Oncol, 2015, 5: 149.
[6]
Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma[J]. Ann Oncol, 2013, 24(Suppl 10): x16-x21.
[7]
Kurman RJ, Shih IeM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer: shifting the paradigm[J]. Hum Pathol, 2011, 42(7): 918-931.
[8]
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma[J]. Nature, 2011, 474(7353): 609-615.
[9]
Vang R, Levine DA, Soslow RA, et al. Molecular alterations of TP53 are a defining feature of ovarian high-grade serous carcinoma: a rereview of cases lacking TP53 mutations in the cancer genome atlas ovarian study[J]. Int J Gynecol Pathol 2016, 35(1): 48-55.
[10]
Pennington KP, Walsh T, Harrell MI, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian fallopian tube, and peritoneal carcinomas[J]. Clin Cancer Res, 2014, 20(3): 764-775.
[11]
Beltrame L, Di Marino M, Fruscio R, et al. Profiling cancer gene mutations in longitudinal epithelial ovarian cancer biopsies by targeted next-generation sequencing: a retrospective study[J]. Ann Oncol, 2015, 26(7): 1363-1371.
[12]
Rojas V, Hirshfield KM, Ganesan S, et al. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment [J]. Int J Mol Sci, 2016, 17(12): e2113.
[13]
Bashashati A, Ha G, Tone A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling[J]. J Pathol, 2013, 231(1): 21-34.
[14]
Castellarin M, Milne K, Zeng T, et al. Clonal evolution of high-grade serous ovarian cancer from primary to recurrent disease[J]. J Pathol, 2013, 229(4): 515-524.
[15]
Cowin PA, George J, Fereday S, et al. LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin[J]. Cancer Res, 2012, 72(16): 4060-4073.
[16]
Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer[J]. Nature, 2015, 521(7553): 489-494.
[17]
Schwarz RF, Ng CK, Cooke SL, et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis[J]. PLoS Med, 2015, 12(2): e1001789.
[18]
Lambrechts S, Smeets D, Moisse M, et al. Genetic heterogeneity after first-line chemotherapy in high-grade serous ovarian cancer[J]. Eur J Cancer, 2016, 53: 51-64.
[19]
Ruiz A, Llort G, Yagüe C, et al. Genetic testing in hereditary breast and ovarian cancer using massive parallel sequencing[J]. Biomed Res Int, 2014, 2014, 542541.
[20]
Bentley DR. Whole-genome re-sequencing[J]. Curr Opin Gene Dev, 2006, 16(6): 545-552.
[21]
Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry[J]. Nature, 2008, 456(7218): 53-59.
[22]
Harismendy O, Ng PC, Strausberg RL, et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies[J]. Genome Biol, 2009, 10(3): R32.
[23]
Bonadona V, Bonaïti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome[J]. JAMA, 2011, 305(22): 2304-2310.
[24]
Loveday C, Turnbull C, Ramsay E, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer[J]. Nat Genet, 2011, 43(9): 879-882.
[25]
Pelttari LM, Heikkinen T, Thompson D, et al. RAD51C is a susceptibility gene for ovarian cancer[J]. Hum Mol Genet, 2011, 20(16): 3278-3288.
[26]
Rafnar T, Gudbjartsson DF, Sulem P, et al. Mutations in BRIP1 confer high risk of ovarian cancer[J]. Nat Genet, 2011, 43(11): 1104-1107.
[27]
Turnbull C, Sud A, Houlston RS. Cancer genetics, precision prevention and a call to action [J]. Nat Genet, 2018, 50(9): 1212-1218.
[28]
Xiao X, Melton DW, Gourley C. Mismatch repair deficiency in ovarian cancer - molecular characteristics and clinical implications[J]. Gynecol Oncol, 2014, 132(2): 506-512.
[29]
Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations[J]. Gastroenterology, 2008, 135(2): 419-428.
[30]
Tan TZ, Miow QH, Huang RY, et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer[J]. EMBO Mol Med, 2013, 5(7): 1051-1066.
[31]
Tothill RW, Tinker AV, George J, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome[J]. Clin Cancer Res, 2008, 14(16): 5198-5208.
[32]
Konecny GE, Wang C, Hamidi H, et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer[J]. J Natl Cancer Inst, 2014, 106(10): dju249.
[33]
Barrett CL, DeBoever C, Jepsen K, et al. Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy[J]. Proc Natl Acad Sci USA, 2015, 112(23): E3050-E3057.
[34]
Buys SS, Partridge E, Black A, et al. Effect on screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial[J]. JAMA, 2011, 305(22): 2295-2303.
[35]
Pinsky PF, Yu K, Kramer BS, et al. Extended mortality results for ovarian cancer screening in the PLCO trial with median 15 years follow-up[J]. Gynecol Oncol, 2016, 143(2): 270-275.
[36]
Jacobs IJ, Menon U, Ryan A, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (ULCTOCS): a randomized controlled trial[J]. Lancet, 2016, 387(10022): 945-956.
[37]
Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases[J]. Cancer, 2005, 104(12): 2807-2816.
[38]
Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing[J]. Proc Natl Acad Sci USA, 2011, 108(44): 18032-18037.
[39]
Alsop K, Fereday S, Meldrum C, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group[J]. J Clin Oncol, 2012, 30(21): 2654-2663.
[40]
Møller P, Hagen AI, Apold J, et al. Genetic epidemiology of BRCA mutations: family history detects less than 50% of the mutation carriers[J]. Eur J Cancer, 2007, 43(11): 1713-1717.
[41]
Guillem JG, Wood WC, Moley JF, et al. ASCO/SSO review of current role of risk-reducing surgery in common hereditary cancer syndromes [J]. J Clin Oncol, 2006, 24(28): 4642-4660.
[42]
Ross JS, Ali SM, Wang K, et al. Comprehensive genomic profiling of epithelial ovarian cancer by next generation sequencing-based diagnostic assay reveals new routes to targeted therapies[J]. Gynecol Oncol, 2013, 130(3): 554-559.
[43]
Greaves M, Maley C. Clonal evolution in cancer[J]. Nature, 2012, 481(7381): 306-313.
[44]
Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V, et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding [J]. Nat Med, 2015, 21(5): 440-448.
[45]
US Food and Drug Administration. FDA approves bevacizumab in combination with chemotherapy for ovarian cancer[EB/OL]. (2018-06-13) [2018-12-25].

URL    
[46]
US Food and Drug Administration. FDA approves olaparib tablets for maintenance treatment in ovarian cancer[EB/OL]. (2017-08-17) [2018-12-25].

URL    
[47]
European Medicines Agency. EU/3/03/171[EB/OL]. (2003-10-17)[2018-12-25].

URL    
[48]
Aghajanian C, Blank SV, Goff BA, et al. OCEANS: a randomized, double-blind, placebo-controlled phase Ⅲ trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal or fallopian tube cancer [J]. J Clin Oncol, 2012, 30(17): 2039-2045.
[49]
Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase Ⅲ trial[J]. J Clin Oncol, 2014, 32(13): 1302-1308.
[50]
Secord AA, Nixon AB, Hurwitz HI. The search for biomarkers to direct antiangiogenic treatment in epithelial ovarian cancer[J]. Gynecol Oncol, 2014, 135(2): 349-358.
[51]
Lee JM, Ledermann JA, Kohn EC. PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies[J]. Ann Oncol, 2014, 25(1): 32-40.
[52]
Liu JF, Matulonis UA. What is the place of PARP inhibitors in ovarian cancer treatment?[J]. Curr Oncol Rep, 2016, 18(5): 29.
[53]
Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer[J]. N Engl J Med, 2016, 375(22): 2154-2164.
[54]
Ryland GL, Hunter SM, Doyle MA, et al. Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors[J]. Genome Med, 2015, 7(1): 87.
[55]
Mackenzie R, Kommoss S, Winterhoff BJ, et al. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms[J]. BMC Cancer, 2015, 15: 415.
[56]
Lim SM, Park HS, Kim S, et al. Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus[J]. Oncotarget, 2016, 7(9): 10547-10556.
[57]
Duffy MJ, Synnott NC, McGowan PM, et al. P53 as a target for the treatment of cancer[J]. Cancer Treat Rev, 2014, 40(10): 1153-1160.
[58]
Li D, Marchenko ND, Moll UM. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis[J]. Cell Death Differ, 2011, 18(12): 1904-1913.
[59]
Farley J, Brady W, Vathipadiekal V, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2013, 14(2): 134-140.
[1] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[4] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[5] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[6] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[7] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[8] 娄丽丽, 刘瀚旻. 儿童哮喘易感基因及表观遗传学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 249-255.
[9] 魏权, 张燊, 陈慧佳, 邹姮, 胡丽娜. 女性生殖道微生物群与辅助生殖技术相关性研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 151-155.
[10] 刘艳艳, 谭曦, 彭雪. 妊娠合并膀胱低度恶性潜能乳头状尿路上皮肿瘤并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 212-218.
[11] 徐瑜杰, 赵国栋. 晚期胃癌治疗方法的研究进展和挑战[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 451-455.
[12] 杨长沅, 凌曦淘, 丘伽美, 段若兰, 李琴, 林玉婕, 秦新东, 侯海晶, 卢富华, 苏国彬. 慢性肾脏病患者衰弱的筛查/评估工具研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 229-233.
[13] 刘晓南, 余斌. 细胞衰老在骨代谢及退行性疾病中的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 113-119.
[14] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[15] 白鲁岳, 赵思齐, 高升, 杨涛, 孟纯阳. 小胶质细胞极化在神经病理性疼痛发生发展过程中的作用研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 33-36.
阅读次数
全文


摘要