[1] |
Shih IeM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis[J]. Am J Pathol, 2004, 164(5): 1511-1518.
|
[2] |
Schmeler KM, Tao X, Frumovitz M, et al. Prevalence of lymph node metastasis in primary mucinous carcinoma of the ovary[J]. Obstet Gynecol, 2010, 116(2): 269-273.
|
[3] |
Kurman RJ, Shih IeM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded[J]. Am J Pathol, 2016, 186(4): 733-747.
|
[4] |
Kurman RJ, Carcangiu ML, Herrington S, et al. WHO classification of tumours of female reproductive organs[M]. 4th ed. Lyon, France: IARC, 2014: 15-23.
|
[5] |
Blagden SP. Harnessing pandemonium: the clinical implications of tumor heterogeneity in ovarian cancer[J]. Front Oncol, 2015, 5: 149.
|
[6] |
Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma[J]. Ann Oncol, 2013, 24(Suppl 10): x16-x21.
|
[7] |
Kurman RJ, Shih IeM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer: shifting the paradigm[J]. Hum Pathol, 2011, 42(7): 918-931.
|
[8] |
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma[J]. Nature, 2011, 474(7353): 609-615.
|
[9] |
Vang R, Levine DA, Soslow RA, et al. Molecular alterations of TP53 are a defining feature of ovarian high-grade serous carcinoma: a rereview of cases lacking TP53 mutations in the cancer genome atlas ovarian study[J]. Int J Gynecol Pathol 2016, 35(1): 48-55.
|
[10] |
Pennington KP, Walsh T, Harrell MI, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian fallopian tube, and peritoneal carcinomas[J]. Clin Cancer Res, 2014, 20(3): 764-775.
|
[11] |
Beltrame L, Di Marino M, Fruscio R, et al. Profiling cancer gene mutations in longitudinal epithelial ovarian cancer biopsies by targeted next-generation sequencing: a retrospective study[J]. Ann Oncol, 2015, 26(7): 1363-1371.
|
[12] |
Rojas V, Hirshfield KM, Ganesan S, et al. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment [J]. Int J Mol Sci, 2016, 17(12): e2113.
|
[13] |
Bashashati A, Ha G, Tone A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling[J]. J Pathol, 2013, 231(1): 21-34.
|
[14] |
Castellarin M, Milne K, Zeng T, et al. Clonal evolution of high-grade serous ovarian cancer from primary to recurrent disease[J]. J Pathol, 2013, 229(4): 515-524.
|
[15] |
Cowin PA, George J, Fereday S, et al. LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin[J]. Cancer Res, 2012, 72(16): 4060-4073.
|
[16] |
Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer[J]. Nature, 2015, 521(7553): 489-494.
|
[17] |
Schwarz RF, Ng CK, Cooke SL, et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis[J]. PLoS Med, 2015, 12(2): e1001789.
|
[18] |
Lambrechts S, Smeets D, Moisse M, et al. Genetic heterogeneity after first-line chemotherapy in high-grade serous ovarian cancer[J]. Eur J Cancer, 2016, 53: 51-64.
|
[19] |
Ruiz A, Llort G, Yagüe C, et al. Genetic testing in hereditary breast and ovarian cancer using massive parallel sequencing[J]. Biomed Res Int, 2014, 2014, 542541.
|
[20] |
Bentley DR. Whole-genome re-sequencing[J]. Curr Opin Gene Dev, 2006, 16(6): 545-552.
|
[21] |
Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry[J]. Nature, 2008, 456(7218): 53-59.
|
[22] |
Harismendy O, Ng PC, Strausberg RL, et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies[J]. Genome Biol, 2009, 10(3): R32.
|
[23] |
Bonadona V, Bonaïti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome[J]. JAMA, 2011, 305(22): 2304-2310.
|
[24] |
Loveday C, Turnbull C, Ramsay E, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer[J]. Nat Genet, 2011, 43(9): 879-882.
|
[25] |
Pelttari LM, Heikkinen T, Thompson D, et al. RAD51C is a susceptibility gene for ovarian cancer[J]. Hum Mol Genet, 2011, 20(16): 3278-3288.
|
[26] |
Rafnar T, Gudbjartsson DF, Sulem P, et al. Mutations in BRIP1 confer high risk of ovarian cancer[J]. Nat Genet, 2011, 43(11): 1104-1107.
|
[27] |
Turnbull C, Sud A, Houlston RS. Cancer genetics, precision prevention and a call to action [J]. Nat Genet, 2018, 50(9): 1212-1218.
|
[28] |
Xiao X, Melton DW, Gourley C. Mismatch repair deficiency in ovarian cancer - molecular characteristics and clinical implications[J]. Gynecol Oncol, 2014, 132(2): 506-512.
|
[29] |
Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations[J]. Gastroenterology, 2008, 135(2): 419-428.
|
[30] |
Tan TZ, Miow QH, Huang RY, et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer[J]. EMBO Mol Med, 2013, 5(7): 1051-1066.
|
[31] |
Tothill RW, Tinker AV, George J, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome[J]. Clin Cancer Res, 2008, 14(16): 5198-5208.
|
[32] |
Konecny GE, Wang C, Hamidi H, et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer[J]. J Natl Cancer Inst, 2014, 106(10): dju249.
|
[33] |
Barrett CL, DeBoever C, Jepsen K, et al. Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy[J]. Proc Natl Acad Sci USA, 2015, 112(23): E3050-E3057.
|
[34] |
Buys SS, Partridge E, Black A, et al. Effect on screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial[J]. JAMA, 2011, 305(22): 2295-2303.
|
[35] |
Pinsky PF, Yu K, Kramer BS, et al. Extended mortality results for ovarian cancer screening in the PLCO trial with median 15 years follow-up[J]. Gynecol Oncol, 2016, 143(2): 270-275.
|
[36] |
Jacobs IJ, Menon U, Ryan A, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (ULCTOCS): a randomized controlled trial[J]. Lancet, 2016, 387(10022): 945-956.
|
[37] |
Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases[J]. Cancer, 2005, 104(12): 2807-2816.
|
[38] |
Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing[J]. Proc Natl Acad Sci USA, 2011, 108(44): 18032-18037.
|
[39] |
Alsop K, Fereday S, Meldrum C, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group[J]. J Clin Oncol, 2012, 30(21): 2654-2663.
|
[40] |
Møller P, Hagen AI, Apold J, et al. Genetic epidemiology of BRCA mutations: family history detects less than 50% of the mutation carriers[J]. Eur J Cancer, 2007, 43(11): 1713-1717.
|
[41] |
Guillem JG, Wood WC, Moley JF, et al. ASCO/SSO review of current role of risk-reducing surgery in common hereditary cancer syndromes [J]. J Clin Oncol, 2006, 24(28): 4642-4660.
|
[42] |
Ross JS, Ali SM, Wang K, et al. Comprehensive genomic profiling of epithelial ovarian cancer by next generation sequencing-based diagnostic assay reveals new routes to targeted therapies[J]. Gynecol Oncol, 2013, 130(3): 554-559.
|
[43] |
Greaves M, Maley C. Clonal evolution in cancer[J]. Nature, 2012, 481(7381): 306-313.
|
[44] |
Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V, et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding [J]. Nat Med, 2015, 21(5): 440-448.
|
[45] |
US Food and Drug Administration. FDA approves bevacizumab in combination with chemotherapy for ovarian cancer[EB/OL]. (2018-06-13) [2018-12-25].
URL
|
[46] |
US Food and Drug Administration. FDA approves olaparib tablets for maintenance treatment in ovarian cancer[EB/OL]. (2017-08-17) [2018-12-25].
URL
|
[47] |
European Medicines Agency. EU/3/03/171[EB/OL]. (2003-10-17)[2018-12-25].
URL
|
[48] |
Aghajanian C, Blank SV, Goff BA, et al. OCEANS: a randomized, double-blind, placebo-controlled phase Ⅲ trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal or fallopian tube cancer [J]. J Clin Oncol, 2012, 30(17): 2039-2045.
|
[49] |
Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase Ⅲ trial[J]. J Clin Oncol, 2014, 32(13): 1302-1308.
|
[50] |
Secord AA, Nixon AB, Hurwitz HI. The search for biomarkers to direct antiangiogenic treatment in epithelial ovarian cancer[J]. Gynecol Oncol, 2014, 135(2): 349-358.
|
[51] |
Lee JM, Ledermann JA, Kohn EC. PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies[J]. Ann Oncol, 2014, 25(1): 32-40.
|
[52] |
Liu JF, Matulonis UA. What is the place of PARP inhibitors in ovarian cancer treatment?[J]. Curr Oncol Rep, 2016, 18(5): 29.
|
[53] |
Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer[J]. N Engl J Med, 2016, 375(22): 2154-2164.
|
[54] |
Ryland GL, Hunter SM, Doyle MA, et al. Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors[J]. Genome Med, 2015, 7(1): 87.
|
[55] |
Mackenzie R, Kommoss S, Winterhoff BJ, et al. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms[J]. BMC Cancer, 2015, 15: 415.
|
[56] |
Lim SM, Park HS, Kim S, et al. Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus[J]. Oncotarget, 2016, 7(9): 10547-10556.
|
[57] |
Duffy MJ, Synnott NC, McGowan PM, et al. P53 as a target for the treatment of cancer[J]. Cancer Treat Rev, 2014, 40(10): 1153-1160.
|
[58] |
Li D, Marchenko ND, Moll UM. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis[J]. Cell Death Differ, 2011, 18(12): 1904-1913.
|
[59] |
Farley J, Brady W, Vathipadiekal V, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2013, 14(2): 134-140.
|