切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (04) : 387 -393. doi: 10.3877/cma.j.issn.1673-5250.2023.04.003

专题论坛

非编码RNA在卵泡发育成熟中作用及其机制的研究现状
周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍()   
  1. 扬州大学临床医学院妇产科,扬州 225001
    扬州大学动物科学与技术学院,扬州 225001
    扬州大学临床医学院生物样本库,扬州 225001
  • 收稿日期:2023-01-30 修回日期:2023-06-06 出版日期:2023-08-01
  • 通信作者: 王丽萍

Current research progress on non-coding RNA in follicular development and maturation

Dongjie Zhou, Min Jiang, Hairui Fan, Lingling Gao, Xiang Kong, Dan Lu, Liping Wang()   

  1. Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
    Yangzhou University College of Animal Science and Technology, Yangzhou 225001, Jiangsu Province, China
    Department of Biobank, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
  • Received:2023-01-30 Revised:2023-06-06 Published:2023-08-01
  • Corresponding author: Liping Wang
  • Supported by:
    National Natural Science Foundation of China(82001512); General Project of Jiangsu Science and Technology Plan(BK20211118); General Project of Medical Scientific Research of Jiangsu Provincial Health Commission(M2021044); Maternal and Child Health Research Project of Jiangsu Province(F201945)
引用本文:

周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.

Dongjie Zhou, Min Jiang, Hairui Fan, Lingling Gao, Xiang Kong, Dan Lu, Liping Wang. Current research progress on non-coding RNA in follicular development and maturation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 387-393.

进入21世纪,高通量测序技术的发展及针对非编码RNA (ncRNA)的分子生物学研究技术与方法的开发,进一步推动了ncRNA的发现。表观遗传学相关ncRNA,包括微小RNA (miRNA)、长链非编码RNA (lncRNA)及环状RNA (circRNA)等,但是这些ncRNA并不直接作为遗传信息载体,而是通过调控BMP15、GDF9基因等表达,参与颗粒细胞(GC)、卵母细胞生命活动。ncRNA对GC增殖、凋亡,卵母细胞发育成熟等,发挥着重要的调控作用,或许在多囊卵巢综合征(PCOS)相关疾病发病机制中,发挥着调控疾病进展作用。笔者拟就ncRNA对卵泡发育成熟的作用及其机制的最新研究进展进行阐述,旨在为POCS等相关生殖系统疾病的预防、早期诊断和治疗提供新思路。

In the 21st century, development of high-throughput sequencing technologies and molecular biology research techniques and methods for non-coding RNA (ncRNA) have further promoted the discovery of ncRNA. Epigenetically related ncRNA include microRNAs (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), etc., however, these ncRNA are not act directly as carriers of genetic information, but involved in life activities of granulosa cells (GC)and oocytes by regulating expression of genes such as BMP15 and GDF9. ncRNA plays an important regulatory role in GC proliferation and apoptosis, oocyte development and maturation, and may play a role in regulating disease progression in pathogenesis of polycystic ovary syndrome (PCOS) related diseases. The authors intend to present the latest research progresses on ncRNA in follicular development and maturation, aiming to explore the role of ncRNA in follicular development and its mechanism, which may provide new ideas for prevention, early diagnosis and treatment of POCS and other related reproductive diseases. The authors intend to present the latest research progress on the role of ncRNA in follicular development and maturation, and its mechanism, aiming at providing new ideas for prevention, early diagnosis and treatment of POCS and other related reproductive system diseases.

[1]
阮鑫,董晓英. 卵泡发育过程中的细胞间通讯[J]. 医学研究杂志2022, 51(6): 177-180. DOI: 10.11969/j.issn.1673-548X.2022.06.037.
[2]
孙艳美,王喜艳,吴迪,等. 小RNA调控卵泡发育的研究进展[J]. 中国医学科学院学报2021, 43(5): 815-821. DOI: 10.3881/j.issn.1000-503X.12683.
[3]
包云,柴娟,卢俏俏,等. 改善卵母细胞体外成熟结局的研究进展[J]. 医药前沿2020, 10(18): 10-11.
[4]
Hu L, Liu Y, Dong P, et al. Protective effect of wuzibushen recipe on follicular development via regulating androgen receptor in polycystic ovary syndrome model rats[J]. Gynecol Endocrinol, 2023, 39(1): 2190808. DOI: 10.1080/09513590.2023.2190808.
[5]
Yang YZ, Zhang M, Mu S, et al. Clinical application of double ovulation stimulation in patients with diminished ovarian reserve and asynchronous follicular development undergoing assisted reproduction technology[J]. Curr Med Sci, 2023, 43(2): 304-312. DOI: 10.1007/s11596-022-2687-0.
[6]
Ruohonen ST, Gaytan F, Usseglio Gaudi A, et al. Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure[J].Hum Reprod Oxf Engl, 2022, 37(4): 806-821. DOI: 10.1093/humrep/deab287.
[7]
李子涵,张宁,张建霞,等. 非编码RNA在生殖领域的研究进展[J]. 中国优生与遗传杂志2018, 26(7): 1-4. DOI: 10.13404/j.cnki.cjbhh.2018.07.001.
[8]
Li X, Zhu L, Luo Y. Long non-coding RNA HLA-F antisense RNA 1 inhibits the maturation of microRNA-613 in polycystic ovary syndrome to promote ovarian granulosa cell proliferation and inhibit cell apoptosis[J]. Bioengineered, 2022, 13(5): 12289-12297. DOI: 10.1080/21655979.2022.2070965.
[9]
苗卉. miR-17-5p/20, miR-93-5p, miR-106-5p及FOXJ2在细胞周期中的作用研究[J]. 长治医学院学报2019, 33(5): 397-400. DOI: 10.3969/j.issn.1006-0588.2019.05.020.
[10]
冯光杭,江声伟,李耀坤,等. miRNA调控动物卵泡发育研究进展[J]. 中国畜牧兽医2021, 48(11): 4133-4142. DOI: 10.16431/j.cnki.1671-7236.2021.11.023.
[11]
Sun X, Klinger FG, Liu J, et al. MiR-378-3p maintains the size of mouse primordial follicle pool by regulating cell autophagy and apoptosis[J].Cell Death Dis, 2020, 11(9): 737. DOI: 10.1038/s41419-020-02965-1.
[12]
Zhang Y, Han D, Yu X, et al.MiRNA-190a-5p promotes primordial follicle hyperactivation by targeting PHLPP1 in premature ovarian failure[J]. Front Genet, 2022, 13: 1034832. DOI: 10.3389/fgene.2022.1034832.
[13]
李暄,佟俊硕,张大崇,等. miRNA调节卵泡颗粒细胞凋亡及其机制的研究进展[J]. 中国畜牧兽医2021, 48(12): 4429-4441. DOI: 10.16431/j.cnki.1671-7236.2021.12.011.
[14]
Andreas E, Pandey HO, Hoelker M, et al. The regulatory role of miR-20a in bovine cumulus cells and its contribution to oocyte maturation[J]. Zygote, 2021, 29(6): 435-444. DOI: 10.1017/S0967199420000933.
[15]
Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, et al. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development[J]. Dev Biol, 2021, 480: 69-77. DOI: 10.1016/j.ydbio.2021.08.008.
[16]
Zhang S, Wang L, Wang L, et al. MiR-17-5p affects porcine granulosa cell growth and oestradiol synthesis by targeting E2F1 gene[J]. Reprod Dom Anim, 2019, 54(11): 1459-1469. DOI: 10.1111/rda.13551.
[17]
Gao L, Wang S, Xu J, et al. SET improved oocyte maturation by serine/threonine protein phosphatase 2A and inhibited oocyte apoptosis in mouse oocytes[J].Reprod Biol, 2022, 22(3): 100668. DOI: 10.1016/j.repbio.2022.100668.
[18]
Hale BJ, Li Y, Adur MK, et al. Inhibition of germinal vesicle breakdown using IBMX increases microRNA-21 in the porcine oocyte[J]. Reprod Biol Endocrinol, 2020, 18(1): 39. DOI: 10.1186/s12958-020-00603-1.
[19]
Jenabi M, Khodarahmi P, Tafvizi F, et al. Evaluation of the potential of miR-21 as a diagnostic marker for oocyte maturity and embryo quality in women undergoing ICSI[J]. Sci Rep, 2023, 13(1): 1440. DOI: 10.1038/s41598-023-28686-x.
[20]
Wei L, Yang X, Gao L, et al. Comparison of miRNA landscapes between the human oocytes with or without arrested development[J].J Assist Reprod Genet, 2022, 39(10): 2227-2237. DOI: 10.1007/s10815-022-02614-w.
[21]
Sun M, Kraus WL. Minireview: long noncoding RNAs: new links between gene expression and cellular outcomes in endocrinology[J]. Mol Endocrinol, 2013, 27(9): 1390-1402. DOI: 10.1210/me.2013-1113.
[22]
孙哲,孙贇. 长链非编码RNA在多囊卵巢综合征中的作用及分子机制[J]. 中华生殖与避孕杂志2022, 42(3): 306-310. DOI: 10.3760/cma.j.cn101441-20200716-00397.
[23]
Huang X, Pan J, Wu B, et al. Construction and analysis of a lncRNA (PWRN2)-mediated ceRNA network reveal its potential roles in oocyte nuclear maturation of patients with PCOS[J]. Reprod Biol Endocrinol, 2018, 16(1): 73. DOI: 10.1186/s12958-018-0392-4.
[24]
Caponnetto A, Battaglia R, Ferrara C, et al. Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells[J]. J Assist Reprod Genet, 2022, 39(4): 919-931. DOI: 10.1007/s10815-022-02446-8.
[25]
Li Y, Zhang J, Liu YD, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome[J]. RNA Biol, 2020, 17(12): 1798-1810. DOI: 10.1080/15476286.2020.1783850.
[26]
张燕迪,任红艳,毕延震. LncRNA对胚胎发育的影响[J]. 湖北农业科学2021, 60(21): 26-32;26-29, 32. DOI: 10.14088/j.cnki.issn0439-8114.2021.21.005.
[27]
Yang CX, Wang PC, Liu S, et al. Long noncoding RNA 2193 regulates meiosis through global epigenetic modification and cytoskeleton organization in pig oocytes[J].J Cell Physiol, 2020, 235(11): 8304-8318. DOI: 10.1002/jcp.29675.
[28]
Jiao Y, Gao B, Wang G, et al. The key long non-coding RNA screening and validation between germinal vesicle and metaphase II of porcine oocyte in vitro maturation[J]. Reprod Dom Anim, 2020, 55(3): 351-363. DOI: 10.1111/rda.13620.
[29]
Wei L, Xia H, Liang Z, et al. Disrupted expression of long non-coding RNAs in the human oocyte: the possible epigenetic culprits leading to recurrent oocyte maturation arrest[J]. J Assist Reprod Genet, 2022, 39(10): 2215-2225. DOI: 10.1007/s10815-022-02596-9.
[30]
Cao Z, Gao D, Xu T, et al. Circular RNA profiling in the oocyte and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation[J]. Aging (Albany NY), 2019, 11(18): 8015-8034. DOI: 10.18632/aging.102315.
[31]
Li HM, Ma XL, Li HG. Intriguing circles: conflicts and controversies in circular RNA research[J]. Wiley Interdiscip Rev RNA, 2019, 10(5): e1538. DOI: 10.1002/wrna.1538.
[32]
Cai Y, Lei X, Chen Z, et al. The roles of cirRNA in the development of germ cells[J].Acta Histochem, 2020, 122(3): 151506. DOI: 10.1016/j.acthis.2020.151506.
[33]
尚芝群,李翰林,陈宣蓉,等. 恶性肿瘤中环状RNA分子机制以及在前列腺癌中的研究进展[J]. 临床泌尿外科杂志2019, 34(10): 835-838. DOI: 10.13201/j.issn.1001-1420.2019.10.019.
[34]
Ma M, Wang H, Zhang Y, et al. CircRNA-mediated inhibin-activin balance regulation in ovarian granulosa cell apoptosis and follicular atresia[J]. Int J Mol Sci, 2021, 22(17): 9113. DOI: 10.3390/ijms22179113.
[35]
Guo T, Zhang J, Yao W, et al. CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles[J].Biochim Biophys Acta BBA Gene Regul Mech, 2019, 1862(10): 194420. DOI: 10.1016/j.bbagrm.2019.194420.
[36]
Cai H, Chang T, Li Y, et al. Circular DDX10 is associated with ovarian function and assisted reproductive technology outcomes through modulating the proliferation and steroidogenesis of granulosa cells[J]. Aging (Albany NY), 2021, 13(7): 9592-9612. DOI: 10.18632/aging.202699.
[37]
Ma Z, Zhao H, Zhang Y, et al. Novel circular RNA expression in the cumulus cells of patients with polycystic ovary syndrome[J].Arch Gynecol Obstet, 2019, 299(6): 1715-1725. DOI: 10.1007/s00404-019-05122-y.
[38]
Zhou W, Zhang T, Lian Y, et al. Exosomal lncRNA and mRNA profiles in polycystic ovary syndrome: bioinformatic analysis reveals disease-related networks[J]. Reprod Biomed Online, 2022, 44(5): 777-790. DOI: 10.1016/j.rbmo.2022.01.007.
[39]
Zhu HL, Chen YQ, Zhang ZF. Downregulation of lncRNA ZFAS1 and upregulation of microRNA-129 repress endocrine disturbance, increase proliferation and inhibit apoptosis of ovarian granulosa cells in polycystic ovarian syndrome by downregulating HMGB1[J]. Genomics, 2020, 112(5): 3597-3608. DOI: 10.1016/j.ygeno.2020.04.011.
[40]
Chen Y, Miao J, Lou G. Knockdown of circ-FURIN suppresses the proliferation and induces apoptosis of granular cells in polycystic ovary syndrome via miR-195-5p/BCL2 axis[J].J Ovarian Res, 2021, 14(1): 156. DOI: 10.1186/s13048-021-00891-0.
[41]
Lu J, Xue Y, Wang Y, et al. CiRS-126 inhibits proliferation of ovarian granulosa cells through targeting the miR-21-PDCD4-ROS axis in a polycystic ovarian syndrome model[J]. Cell Tissue Res, 2020, 381(1): 189-201. DOI: 10.1007/s00441-020-03187-9.
[42]
Zhou Z, Tu Z, Zhang J, et al. Follicularfluid-derived exosomal microRNA-18b-5p regulates PTEN-mediated PI3K/akt/mTOR signaling pathway to inhibit polycystic ovary syndrome development[J]. Mol Neurobiol, 2022, 59(4): 2520-2531. DOI: 10.1007/s12035-021-02714-1.
[43]
卫玲,张燕,陈晓娟. LINC00511调控NF-κB通路对多囊卵巢综合征卵巢颗粒细胞凋亡和炎性反应的影响[J]. 河北医药2022, 44(16): 2435-2438. DOI: 10.3969/j.issn.1002-7386.2022.16.007.
[44]
Zhang C, Liu J, Lai M, et al. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome[J].Arch Gynecol Obstet, 2019, 300(2): 431-440. DOI: 10.1007/s00404-019-05129-5.
[1] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[2] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[3] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[4] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[5] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[6] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[7] 魏权, 张燊, 陈慧佳, 邹姮, 胡丽娜. 女性生殖道微生物群与辅助生殖技术相关性研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 151-155.
[8] 刘艳艳, 谭曦, 彭雪. 妊娠合并膀胱低度恶性潜能乳头状尿路上皮肿瘤并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 212-218.
[9] 李晓晖, 上官昌盛, 向英, 裴芝皆, 车俊志, 谢飞. 3D腹腔镜袖状胃切除术后机体能量代谢与多囊卵巢综合征患者性激素水平关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 538-541.
[10] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[13] 程亚飞, 任长远, 李海马, 孙恺, 马亚群. FSTL1基因在胶质瘤发展中作用的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 206-215.
[14] 刘育昕, 王子晗, 张艺馨, 栾永婕, 孟凯. 肾母细胞瘤基因1在卵巢疾病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(03): 178-183.
[15] 张佳玉, 丁玉兰, 郑旋玲, 刘长勤. 睡眠障碍对多囊卵巢综合征不良影响的研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 131-136.
阅读次数
全文


摘要