[1] |
Lortet-Tieulent J, Ferlay J, Bray F, et al. International patterns and trends in endometrial cancer incidence, 1978-2013[J]. J Natl Cancer Inst, 2018, 110(4): 354-361.
|
[2] |
王丽红,郭春燕,瞿全新. LKB1/AMPK/mTOR信号转导通路在子宫内膜癌发病机制中的研究[J]. 中国妇幼保健,2014, 29(12): 1933-1936.
|
[3] |
Resta N, Pierannunzio D, Lenato GM, et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz-Jeghers syndrome patients: results of an Italian multicenter study[J]. Digest Liver Dis, 2013, 45(7): 606-611.
|
[4] |
Veleva-Rotse BO, Smart JL, Baas AF, et al. STRAD pseudokinases regulate axogenesis and LKB1 stability[J]. Neural Dev, 2014, 9(1): 5.
|
[5] |
Konena J, Wilkinsona S, Leec B, et al. LKB1 kinase-dependent and independent defects disrupt polarity and adhesion signaling to drive collagen remodeling during invasion[J]. Mol Biol Cell, 2016, 27(7): 1069-1084.
|
[6] |
Dogliotti G, Kullmann L, Dhumale P, et al. Membrane-binding and activation of LKB1 by phosphatidic acid is essential for development and tumour suppression[J]. Nat Commun, 2017, 8: 15747.
|
[7] |
Fogarty S, Ross FA, Vara Ciruelos D, et al. AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2[J]. Mol Cancer Res, 2016, 14 (8): 683-695.
|
[8] |
Hardie DG, Lin SC. AMP-activated protein kinase not just an energy sensor[J]. F1000Res, 2017, 6: 1724.
|
[9] |
Li XD, Wang LL, Zhou XE, et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen[J]. Cell Res, 2015, 25(1): 50-66.
|
[10] |
Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo[J]. Cell Metab, 2013, 17(1): 113-124.
|
[11] |
Duan P, Hu CH, Quan C, et al. 4-Nonylphenol induces autophagy and attenuates mTOR-p70S6K/4EBP1 signaling by modulating AMPK activation in sertoli cells[J]. Toxicol Lett, 2017, 267(1): 21-31.
|
[12] |
Brockhoff M, Rion N, Chojnowska K, et al. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy typeⅠ[J]. J Clin Invest, 2017, 127(2): 549-563.
|
[13] |
Bian YH, Xu J, Zhao WY, et al. Targeting mTORC2 component rictor inhibits cell proliferation and promotes apoptosis in gastric cancer[J]. Am J Transl Res, 2017, 9(9): 4317-4330.
|
[14] |
Gailite I, Aerne BL, Tapon N. Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system[J]. Proc Natl Acad Sci USA, 2015, 112(37): E5169-E5178.
|
[15] |
Sun D, Liu H, Dai X, et al. Aspirin disrupts the mTOR-raptor complex and potentiates the anti-cancer activities of sorafenib via mTORC1 inhibition[J]. Cancer Lett, 2017, 406: 105-115.
|
[16] |
Howell JJ, Hellberg K, Turner M, et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex[J]. Cell Metab, 2017, 25(2): 463-471.
|
[17] |
Yuan Y, Xue X, Guo RB, et al. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway[J]. CNS Neurosci Ther, 2012, 18(7): 536-546.
|
[18] |
Hsu JL, Liu SP, Lee CC, et al. A unique amidoanthraquinone derivative displays antiproliferative activity against human hormone-refractory metastatic prostate cancers through activation of LKB1-AMPK-mTOR signaling pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(10): 979-990.
|
[19] |
Nead KT, Sharp SJ, Thompson DJ, et al. Evidence of a causal association between insulinemia and endometrial cancer: a mendelian randomization analysis[J]. J Nat Cancer Inst, 2015, 107(9): 1-7.
|
[20] |
Jian J, Hanab L, Zhangbcd HG, et al. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling[J]. Gynecol Oncol, 2015, 138(3): 668-675.
|
[21] |
Zhang Y, Xu F, Liang H, et al. Exenatide inhibits the growth of endometrial cancer Ishikawa xenografts in nude mice[J]. Oncol Rep, 2016, 35(3): 1340-1348.
|
[22] |
Yang F, Zhang L, Gao Z, et al. Exogenous H2S protects against diabetic cardiomyopathy by activating autophagy via the AMPK/mTOR pathway[J]. Cell Physiol Biochem, 2017, 43(3): 1168-1187.
|
[23] |
Yin H, Zhao L, Li S, et al. Impaired cellular energy metabolism contributes to duck-enteritis-virus-induced autophagy via the AMPK-TSC2-MTOR signaling pathway[J]. Front Cell Infect Microbiol, 2017, 7: 423.
|
[24] |
Song Y, Zhang P, Sun Y, et al. AMPK activation-dependent autophagy compromises oleanolic acid-induced cytotoxicity in human bladder cancer cells[J]. Oncotarget, 2017, 8(40): 67942-67954.
|
[25] |
Kanda R, Hiraike H, Wada-Hiraike O, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer[J]. BMC Cancer, 2018,18(1): 657.
|
[26] |
Ikeda Y, Kiyotani K, Yew PY, et al. Clinical significance of T cell clonality and expression levels of immune-related genes in endometrial cancer[J]. Oncol Rep, 2017, 37(5): 2603-2610.
|
[27] |
Peña CG, Nakada Y, Saatcioglu HD, et al. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment[J]. J Clin Invest, 2015, 125(11): 4063-4076.
|
[28] |
Lee S, Lee E, Ko E, et al. Tumor-associated macrophages secrete CCL2 and induce the invasive phenotype of human breast epithelial cells through upregulation of ERO1-α and MMP-9[J]. Cancer Lett, 2018, 437(1): 25-34.
|
[29] |
Gallos ID, Yap J, Rajkhowa M, et al. Regression, relapse, and live birth rates with fertility-sparing therapy for endometrial cancer and atypical complex endometrial hyperplasia: a systematic review and metaanalysis[J]. Am J Obstet Gynecol, 2012, 207(4): 266.e1-e266.e12.
|
[30] |
Akira M, Takako K, Yasunori S, et al. Effects of metformin on endometrial cancer cell growth in vivo: a preoperative prospective trial[J]. Cancer, 2014, 120(19): 2986-2995.
|
[31] |
Gu CJ, Cheng J, Zhang B, et al. Protopanaxadiol and metformin synergistically inhibit estrogen-mediated proliferation and anti-autophagy effects in endometrial cancer cells[J]. Am J Transl Res, 2017, 9(9): 4071-4082.
|
[32] |
Oh J, Kim GD, Kim S, et al. Antofine, a natural phenanthroindolizidine alkaloid, suppresses angiogenesis via regulation of AKT/mTOR and AMPK pathway in endothelial cells and endothelial progenitor cells derived from mouse embryonic stem cells[J]. Food Chem Toxicol, 2017, 107(Pt A): 201-207.
|
[33] |
Slomovitz BM, Lu KH, Johnston T, et al. A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma[J]. Cancer, 2010, 116(23): 5415-5149.
|
[34] |
Contreras CM, Akbay EA, Gallardo TD, et al. Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy[J]. Dis Model Mech, 2010, 3(3-4): 181-193.
|
[35] |
Lu KH, Wu W, Dave B, et al. Loss of tuberous sclerosis complex-2 function and activation of mammalian target of rapamycin signaling in endometrial carcinoma[J]. Clin Cancer Res, 2008, 14(9): 2543-2550.
|