切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2024, Vol. 20 ›› Issue (02) : 172 -178. doi: 10.3877/cma.j.issn.1673-5250.2024.02.007

专题论坛

肠道真菌与儿童炎症性肠病
刘清1, 汪志凌1,()   
  1. 1. 四川大学华西第二医院小儿消化科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2023-12-23 修回日期:2024-03-16 出版日期:2024-04-01
  • 通信作者: 汪志凌

Gut mycobiome and pediatric inflammatory bowel disease

Qing Liu1, Zhiling Wang1,()   

  1. 1. Department of Pediatric Gastroenterology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2023-12-23 Revised:2024-03-16 Published:2024-04-01
  • Corresponding author: Zhiling Wang
  • Supported by:
    China International Medical Foundation Project(Z-2017-27-2001); Technology Project of Science and Technology Department of Sichuan Province(2022YFS0026)
引用本文:

刘清, 汪志凌. 肠道真菌与儿童炎症性肠病[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 172-178.

Qing Liu, Zhiling Wang. Gut mycobiome and pediatric inflammatory bowel disease[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(02): 172-178.

肠道真菌是肠道微生态的重要组成部分,随着检测技术的进步,肠道真菌相关研究不断深入。肠道真菌与炎症性肠病(IBD)相关性,也逐渐引起儿童消化领域的重视,基于肠道真菌的干预措施,可能为IBD临床治疗提供一种新的策略。笔者拟就IBD患者的肠道真菌构成变化,以及其作为IBD诊治生物标志物与治疗手段可能性的最新研究现状进行阐述,旨在为临床认识肠道真菌与IBD的关系提供参考。

Gut mycobiome (fungi) is a crucial component of the intestinal microecosystem homeostasis. The advancement of technology contributes greatly to new research in this field. More and more pediatric gastroenterology studies have focused on the relationship between intestinal fungi and IBD. Gut mycobiome-based interventions may provide a new strategy for the treatment of IBD. In this study, we intend to elaborate the latest research status of the composition changes gut mycobiome, its potential use as biomarkers and targets for the treatment of IBD, aiming to provide reference for clinical understanding of the relationship between intestinal fungi and IBD.

[1]
Rao C, Coyte KZ, Bainter W, et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants[J]. Nature, 2021, 591(7851): 633-638. DOI: 10.1038/s41586-021-03241-8.
[2]
向梅,商丽红,杜丽娜,等. 相关生化指标在儿童炎症性肠病诊断中的价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2018, 14(4): 441-446. DOI: 10.3877/cma.j.issn.1673-5250.2018.04.011.
[3]
Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 331-345. DOI: 10.1038/s41575-019-0121-2.
[4]
Fuller MK. Pediatric inflammatory bowel disease: special considerations[J]. Surg Clin North Am, 2019, 99(6): 1177-1183. DOI: 10.1016/j.suc.2019.08.008.
[5]
Jagt JZ, van Rheenen PF, Thoma SMA, et al. The top 10 research priorities for inflammatory bowel disease in children and young adults: results of a James Lind Alliance Priority Setting Partnership[J]. Lancet Gastroenterol Hepatol, 2023, 8(8): 690-691. DOI: 10.1016/S2468-1253(23)00140-1.
[6]
Zhang F, Aschenbrenner D, Yoo JY, et al. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly[J]. Lancet Microbe, 2022, 3(12): e969-e983. DOI: 10.1016/S2666-5247(22)00203-8.
[7]
孙耀华,白辰光. 念珠菌与消化道肿瘤关系的相关研究进展[J]. 中国真菌学杂志2021, 16(2): 137-140. DOI: 10.3969/j.issn.1673-3827.2021.02.015.
[8]
Sun Y, Zuo T, Cheung CP, et al. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China[J]. Gastroenterology, 2021, 160(1): 272-286.e11. DOI: 10.1053/j.gastro.2020.09.014.
[9]
Schei K, Simpson MR, Avershina E, et al. Early gut fungal and bacterial microbiota and childhood growth[J]. Front Pediatr, 2020, 8: 572538. DOI: 10.3389/fped.2020.572538 .
[10]
Willis KA, Purvis JH, Myers ED, et al. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age[J]. FASEB J, 2019, 33(11): 12825-12837. DOI: 10.1096/fj.201901436RR.
[11]
Fauzan AH, Mejia JLC, Krych L, et al. Gut mycobiome dysbiosis is linked to hypertriglyceridemia among home dwelling elderly danes[J]. Cold Spring Harbor Laboratory, 2020. DOI: 10.1101/2020.04.16.044693.
[12]
Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review[J]. Gastroenterology, 2022, 162(4): 1147-1159.e4. DOI: 10.1053/j.gastro.2021.12.282.
[13]
Park J, Cheon JH. Incidence and prevalence of inflammatory bowel disease across Asia[J]. Yonsei Med J, 2021, 62(2): 99-108. DOI: 10.3349/ymj.2021.62.2.99.
[14]
Wang XQ, Zhang Y, Xu CD, et al. Inflammatory bowel disease in Chinese children: a multicenter analysis over a decade from Shanghai[J]. Inflamm Bowel Dis, 2013, 19(2): 423-428. DOI: 10.1097/MIB.0b013e318286f9f2.
[15]
Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis[J]. Science, 2012, 336(6086): 1314-1317. DOI: 10.1126/science.1221789.
[16]
Wang T, Pan D, Zhou Z, et al. Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut[J]. PLoS Pathog, 2016, 12(6): e1005662. DOI: 10.1371/journal.ppat.1005662.
[17]
Doron I, Leonardi I, Li XV, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies[J]. Cell, 2021, 184(4): 1017-1031.e14. DOI: 10.1016/j.cell.2021.01.016.
[18]
Mogilnicka I, Ufnal M. Gut mycobiota and fungal metabolites in human homeostasis[J]. Curr Drug Targets, 2019, 20(2): 232-240. DOI: 10.2174/1389450119666180724125020.
[19]
魏文娟,缪佳蓉,缪应雷. 炎症性肠病患者的肠道真菌组成及其影响因素[J]. 国际消化病杂志2022, 42(3): 146-149. DOI: 10.3969/j.issn.1673-534X.2022.03.002.
[20]
Lam S, Zuo T, Ho M, et al. Review article: fungal alterations in inflammatory bowel diseases[J]. Aliment Pharmacol Ther, 2019, 50(11-12): 1159-1171. DOI: 10.1111/apt.15523.
[21]
Qiu X, Zhao X, Cui X, et al. Characterization of fungal and bacterial dysbiosis in young adult Chinese patients with Crohn′s disease[J]. Therap Adv Gastroenterol, 2020, 13: 1756284820971202. DOI: 10.1177/1756284820971202.
[22]
Yadav A, Yadav R, Sharma V, et al. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease[J]. Indian J Gastroenterol, 2024, 43(1): 112-128. DOI: 10.1007/s12664-023-01510-0.
[23]
Liu S, Zhao W, Lan P, et al. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345. DOI: 10.1007/s13238-020-00745-3.
[24]
Li XV, Leonardi I, Putzel GG, et al. Immune regulation by fungal strain diversity in inflammatory bowel disease[J]. Nature, 2022, 603(7902): 672-678. DOI: 10.1038/s41586-022-04502-w.
[25]
Limon JJ, Tang J, Li D, et al. Malassezia is associated with Crohn′s disease and exacerbates colitis in mouse models[J]. Cell Host Microbe, 2019, 25(3): 377-388.e6. DOI: 10.1016/j.chom.2019.01.007.
[26]
Zeng X, Li X, Yue Y, et al. Ameliorative effect of Saccharomyces cerevisiae JKSP39 on Fusobacterium nucleatum and dextran sulfate sodium-induced colitis mouse model[J]. J Agric Food Chem, 2022, 70(44): 14179-14192. DOI: 10.1021/acs.jafc.2c05338.
[27]
Rodrigues M, Bueno C, Lomazi EA, et al. Classical serological markers in pediatric inflammatory bowel disease in Brazil[J]. Arq Gastroenterol, 2021, 58(4): 495-503. DOI: 10.1590/S0004-2803.202100000-89.
[28]
Bourgonje AR, Vogl T, Segal E, et al. Antibody signatures in inflammatory bowel disease: current developments and future applications[J]. Trends Mol Med, 2022, 28(8): 693-705. DOI: 10.1016/j.molmed.2022.05.004 .
[29]
Kim JM, Choi YM, Jung SA, et al. Diagnostic utility, disease activity, and disease phenotype correlation of serum ASCA, pANCA, and PR3-ANCA in pediatric inflammatory bowel disease[J]. J Pediatr (Rio J), 2024, 100(2): 204-211. DOI: 10.1016/j.jped.2023.10.005 .
[30]
Duarte-Silva M, Afonso PC, de Souza PR, et al. Reappraisal of antibodies against Saccharomyces cerevisiae (ASCA) as persistent biomarkers in quiescent Crohn′s disease[J]. Autoimmunity, 2019, 52(1): 37-47. DOI: 10.1080/08916934.2019.1588889 .
[31]
Gao X, Zhang Y. Serological markers facilitate the diagnosis of Crohn′s disease[J]. Postgrad Med, 2021, 133(3): 286-290. DOI: 10.1080/00325481.2021.1873649 .
[32]
Ricciuto A, Aardoom M, Orlanski-Meyer E, et al. Predicting outcomes in pediatric Crohn′s disease for management optimization: systematic review and consensus statements from the pediatric inflammatory bowel disease-ahead program[J]. Gastroenterology, 2021, 160(1): 403-436.e26. DOI: 10.1053/j.gastro.2020.07.065.
[33]
中华医学会消化病学分会炎症性肠病学组,中国炎症性肠病诊疗质量控制评估中心. 中国克罗恩病诊治指南(2023年·广州)[J]. 中华炎性肠病杂志(中英文), 2024, 8(1): 2-32. DOI: 10.3760/cma.j.cn101480-20240108-00006.
[34]
中华医学会儿科学分会消化学组,中华医学会儿科学分会临床营养学组. 儿童炎症性肠病诊断和治疗专家共识[J]. 中华儿科杂志2019, 57(7): 501-507. DOI: 10.3760/cma.j.issn.057810.2019.07.002.
[35]
Huang X, Hu M, Sun T, et al. Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts[J]. Cell Host Microbe, 2023, 31(11): 1930-1943.e4. DOI: 10.1016/j.chom.2023.10.005.
[36]
高洁,吴开春. 免疫调节治疗在炎症性肠病治疗中的应用现状以及面临的困境[J]. 中华医学信息导报2021, 36(19): 21. DOI: 10.3760/cma.j.issn.1000-8039.2021.19.129.
[37]
Atreya R, Neurath MF. Biomarkers for Personalizing IBD therapy: the quest continues[J]. Clin Gastroenterol Hepatol, 2024: S1542-3565(24)00104-6. DOI: 10.1016/j.cgh.2024.01.026
[38]
Jain U, Ver Heul1 AM, Xiong SS, et al. Debaryomyces is enriched in Crohn′s disease intestinal tissue and impairs healing in mice[J]. Science, 2021, 371(6534): 1154-1159. DOI: 10.1126/science.abd0919.
[39]
Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 503-513. DOI: 10.1038/s41575-021-00441-5.
[40]
Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial[J]. JAMA, 2019, 321(2): 156-164. DOI: 10.1001/jama.2018.20046.
[41]
Pai N, Popov J, Hill L, et al. Results of the first pilot randomized controlled trial of fecal microbiota transplant in pediatric ulcerative colitis: lessons, limitations, and future prospects[J]. Gastroenterology, 2021, 161(2): 388-393.e3. DOI: 10.1053/j.gastro.2021.04.067.
[42]
中华医学会消化病学分会炎症性肠病学组儿科协作组,中华医学会儿科学分会临床营养学组. 儿童炎症性肠病诊疗中心质量控制标准专家共识[J]. 中华儿科杂志2023, 61(2): 117-121. DOI: 10.3760/cma.j.cn112140-20220608-00525.
[43]
Allegretti JR, Kelly CR, Grinspan A, et al. Inflammatory bowel disease outcomes following fecal microbiota transplantation for recurrent C. difficile infection[J]. Inflamm Bowel Dis, 2021, 27(9): 1371-1378. DOI: 10.1093/ibd/izaa283.
[44]
Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection[J]. Nat Commun, 2018, 9(1): 3663. DOI: 10.1038/s41467-018-06103-6.
[45]
Tian H, Zhang S, Qin H, et al. Long-term safety of faecal microbiota transplantation for gastrointestinal diseases in China[J]. Lancet Gastroenterol Hepatol, 2022, 7(8): 702-703. DOI: 10.1016/S2468-1253(22)00170-4.
[46]
Pais P, Almeida V, Ylmaz M, et al. Saccharomyces boulardii: what makes it tick as successful probiotic?[J]. J Fungi: Open Access Mycol J, 2020, 6(2): 78. DOI: 10.3390/jof6020078.
[47]
Li B, Zhang H, Shi L, et al. Saccharomyces boulardii alleviates DSS-induced intestinal barrier dysfunction and inflammation in humanized mice[J]. Food Funct, 2022, 13(1): 102-112. DOI: 10.1039/d1fo02752b.
[48]
史刚刚,韩梅,郝敬鹏,等. 布拉酵母菌的作用机制及其在溃疡性结肠炎中应用的研究进展[J]. 国际生物医学工程杂志2021, 44(2): 163-163. DOI: 10.3760/cma.j.cn121382-20200917-00213 .
[49]
Huo X, Li D, Wu F, et al. Cultivated human intestinal fungus Candida metapsilosis M2006B attenuates colitis by secreting acyclic sesquiterpenoids as FXR agonists[J]. Gut, 2022, 71(11): 2205-2217. DOI: 10.1136/gutjnl-2021-325413.
[50]
Scott BM, Gutiérrez-Vázquez C, Sanmarco LM, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease[J]. Nat Med, 2021, 27(7): 1212-1222. DOI: 10.1038/s41591-021-01390-x.
[51]
Chiaro TR, Soto R, Zac Stephens W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice[J]. Sci Transl Med, 2017, 9(380): eaaf9044. DOI: 10.1126/scitranslmed.aaf9044.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[3] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[4] 王雅楠, 刘丹, 曹正浓, 贾慧敏. 儿童迟发性先天性膈疝患儿的临床诊治特点分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 410-419.
[5] 刘静, 王燕妮, 王继萍. 儿童毛发移植应用前景及病例讨论[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 368-368.
[6] 郑宝英, 黄小兰, 贾楠, 朱春梅. 儿童难治性肺炎支原体肺炎早期预警指标[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 215-221.
[7] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[8] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[9] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[10] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[11] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[12] 孙文恺, 沈青, 杭丽, 张迎春. 纤维蛋白原与清蛋白比值、中性粒细胞与白蛋白比值、C反应蛋白与溃疡性结肠炎病情评估和预后的关系[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 426-431.
[13] 王晓瑜, 郭群英, 牛雅萌, 赵成松. 公立儿童医院促进儿科就医均等化实践探析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 383-387.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?