切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2018, Vol. 14 ›› Issue (05) : 612 -616. doi: 10.3877/cma.j.issn.1673-5250.2018.05.020

所属专题: 专题评论 文献

综述

胚胎质量评估方法的研究进展
耿蒙慧1, 张璨1, 邢阿英1, 王大琳2, 胡艳秋3,()   
  1. 1. 116044 辽宁,大连医科大学妇产科
    2. 225000 江苏,扬州大学医学院妇产科
    3. 225000 江苏扬州,苏北人民医院生殖中心
  • 收稿日期:2018-02-27 修回日期:2018-07-09 出版日期:2018-10-01
  • 通信作者: 胡艳秋

Research progress of methods on the assessment of embryonic quality

Menghui Geng1, Can Zhang1, Aying Xing1, Dalin Wang2, Yanqiu Hu3,()   

  1. 1. Department of Obstetrics and Gynecology, Dalian Medical University, Dalian 116044, Liaoning Province, China
    2. Department of Obstetrics and Gynecology, Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
    3. Reproductive Medical Centre, Northern Jiangsu People’s Hospital, Yangzhou 225000, Jiangsu Province, China
  • Received:2018-02-27 Revised:2018-07-09 Published:2018-10-01
  • Corresponding author: Yanqiu Hu
  • About author:
    Corresponding author: Hu Yanqiu, Email:
  • Supported by:
    Project of Jiangsu Provincial Commission of Health and Family Planning for Youth Medicine Key Talents(QNRC2016347)
引用本文:

耿蒙慧, 张璨, 邢阿英, 王大琳, 胡艳秋. 胚胎质量评估方法的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(05): 612-616.

Menghui Geng, Can Zhang, Aying Xing, Dalin Wang, Yanqiu Hu. Research progress of methods on the assessment of embryonic quality[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2018, 14(05): 612-616.

选择植入发育潜能更高的胚胎是辅助生殖技术(ART)中最主要的挑战之一。形态学评分法是目前运用最为广泛的胚胎质量评估方法,但是由于存在观察者的人为误差,导致该方法评价胚胎质量并不准确。近十年,代谢组学和蛋白质组学不断发展,结合傅立叶变换红外(FTIR)光谱、近红外光谱(NIR)、1H-质子核磁共振(1H-NMR)光谱、拉曼光谱技术等新技术的临床应用,可以精确检测胚胎培养液中的各种代谢产物,如丙酮酸、氨基酸、人类白细胞抗原(HLA)-G等。研究结果表明,妊娠组胚胎培养液代谢产物与未妊娠组不同。因此,无创性代谢组学及蛋白质组学对于胚胎质量的评估,或许可被运用于临床指导体外受精(IVF)方案的调整,选择最优质的移植胚胎。然而,形态学评分法、代谢组学和蛋白质组学均不能检测胚胎染色体异常,基因组学可弥补这一缺憾。通过胚胎移植前基因组检测和筛查,可以排除非整倍体性胚胎,从而提高ART助孕成功率。笔者拟就胚胎质量评估方法研究的最新进展进行阐述。

Selection of embryos with higher potentiality of development has been one of the major challenges in assisted reproductive technology (ART). Morphological scoring method is a general method to evaluate embryonic quality, but it′s not an accurate method due to the personal error. In the past decade, with the development of metabolomics and proteomics, metabolities in embryo culture media such as pyruvate, amino acids, human leukocyte antigen (HLA)-G can be precisely analyzed by newly developed technologies such as Fourier transformation infrared (FTIR) spectroscopy, near infrared spectroscopy (NIR), 1H-proton nuclear magnetic resonance (1H-NMR) spectroscopy, and Raman spectroscopy. Studies have shown that the metabolic profiles vary between pregnancy and non-pregnancy embryos. Thus, noninvasive metabolomics and proteomics might be applied to guide clinical protocol adjustments of in vitro fertilization (IVF) and select transplanted embryo with the best quality. However, chromosome abnormalities in embryo can not be detected by morphological scoring method, metabolomics, proteomics, and genomics can make up for this deficiency. Genomic screening could be conducted to detect non-euploidy embryo before transplantation and thus improve the success rate of ART. This paper reviews the latest research progress of the embryo quality assessment methods.

[1]
Siristatidis CS,Sertedaki E,Vaidakis D. Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies[J]. Cochrane Database Syst Rev, 2017, 5(5): CD011872.
[2]
Wong C,Chen AA,Behr B, et al. Time-lapse microscopy and image analysis in basic and clinical embryo development research[J]. Reprod Biomed Online, 2013, 26(2): 120-129.
[3]
李楠,黎靖宇,唐永梅,等. 早期胚胎质量评估:提高预测胚胎发育潜能的敏感性和特异性[J]. 中国组织工程研究,2014, 18(42): 6849-6855.
[4]
Mizobe Y,Oya N,Iwakiri R, et al. Effects of early cleavage patterns of human embryos on subsequent in vitro development and implantation[J]. Fertil Steril, 2016, 106(2): 348-353.
[5]
Hesters L,Prisant N,Fanchin R, et al. Impact of early cleaved zygote morphology on embryo development and in vitro fertilization-embryo transfer outcome: a prospective study[J]. Fertil Steril, 2008, 89(6): 1677-1684.
[6]
Watanabe S,Kamihata M,Matsunaga R, et al. Effect of an abnormal first cleavage on embryonic development: time-lapse video analysis[J]. Fertil Steril, 2013, 100(3): S245-S246.
[7]
Desch L,Bruno C,Luu M, et al. Embryo multinucleation at the two-cell stage is an independent predictor of intracytoplasmic sperm injection outcomes[J]. Fertil Steril, 2017, 107(1): 97-103.
[8]
Martínez-Granados L,Serrano M,González-Utor A, et al. Reliability and agreement on embryo assessment: 5 years of an external quality control programme[J]. Reprod Biomed Online, 2018, 36(3): 259-268.
[9]
李楠,唐永梅,牟联俊,等,辅助生殖技术中胚胎质量评估方法的研究进展[J/CD].中华妇幼临床医学杂志(电子版), 2015, 11(2): 265-268.
[10]
Aguilar J,Rubio I,Muñoz E, et al. Study of nucleation status in the second cell cycle of human embryo and its impact on implantation rate[J]. Fertil Steril, 2016, 106(2): 291-299.
[11]
Yang L,Cai S,Zhang S, et al. Single embryo transfer by day 3 time-lapse selection versus day 5 conventional morphological selection: a randomized, open-label, non-inferiority trial[J]. Hum Reprod, 2018, 33(5): 869-876.
[12]
Milewski R,Milewska AJ,Kuczyńska A,et al. Do morphokinetic data sets inform pregnancy potential?[J]. J Assist Reprod Genet, 2016, 33(3): 357-365.
[13]
Basile N,Barrière P,Meseguer M, et al. Time-lapse in the IVF lab: how should we assess potential benefit?[J]. Hum Reprod, 2015, 30(5): 1276.
[14]
Racowsky C,Kovacs P,Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go?[J]. J Assist Reprod Genet, 2015, 32(7): 1025-1030.
[15]
Vergouw CG,Heymans MW,Hardarson T, et al. No evidence that embryo selection by near-infrared spectroscopy in addition to morphology is able to improve live birth rates: results from an individual patient data Meta-analysis[J]. Hum Reprod, 2014, 29(3): 455-461.
[16]
Kirkegaard K,Svane ASP,Nielsen JS, et al. Nuclear magnetic resonance metabolomic profiling of day 3 and 5 embryo culture medium does not predict pregnancy outcome in good prognosis patients: a prospective cohort study on single transferred embryos[J]. Hum Reprod, 2014, 29(11): 2413-2420.
[17]
Parlatan U,Basar G,Bavili N, et al. Embryo viability indexing using raman spectroscopy of spent culture media[J]. Spectrosc Lett, 2016, 49(7): 458-463.
[18]
RoyChoudhury S,Singh A,Gupta NJ, et al. Repeated implantation failure versus repeated implantation success: discrimination at a metabolomic level[J]. Hum Reprod, 2016, 31(6): 1265-1274.
[19]
Yang YC,Kuo CH,Tseng YJ, et al. Identifying differential expressed metabolites in viable embryos with UHPLC-ToF-MS (ultra high-performance liquid chromatography-time of flight-mass spectrometry): a comprehensive metabolomic approach[J]. Fertil Steril, 2013, 100(3): S119.
[20]
Tejera A,Castelló D,de los Santos JM, et al. Combination of metabolism measurement and a time-lapse system provides an embryo selection method based on oxygen uptake and chronology of cytokinesis timing[J]. Fertil Steril, 2016, 106(1): 119-126.
[21]
Bjelica A,Subanovic S. Assessment of the embryo quality in the procedure of in vitro fertilization[J]. Med Pregl, 2016, 69(7-8): 241-246.
[22]
姚元庆. 人类白细胞抗原-G与早期胚胎生长发育和着床[J]. 生殖医学杂志,2014, 23(3): 206-209.
[23]
Niu Z,Wang L,Pang RTK, et al. A Meta-analysis of the impact of human leukocyte antigen-G on the outcomes of IVF/ICSI[J]. Reprod Biomed Online, 2017, 34(6): 611-618.
[24]
McReynolds S,Vanderlinden L,Stevens J, et al. Lipocalin-1: a potential marker for noninvasive aneuploidy screening[J]. Fertil Steril, 2011, 95(8): 2631-2633.
[25]
Dominguez F,Meseguer M,Aparicio-Ruiz B, et al. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies[J]. Fertil Steril, 2015, 104(4): 908-914.
[26]
Rødgaard T,Heegaard PM,Callesen H. Non-invasive assessment of in-vitro embryo quality to improve transfer success[J]. Reprod Biomed Online, 2015, 31(5): 585-592.
[27]
Lee E,Illingworth P,Wilton L, et al. The clinical effectiveness of preimplantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): systematic review[J]. Hum Reprod, 2015, 30(2): 473-483.
[28]
Lu L,Lv B,Huang K, et al. Recent advances in preimplantation genetic diagnosis and screening[J]. J Assist Reprod Genet, 2016, 33(9): 1129-1134.
[29]
Capalbo A,Ubaldi FM,Cimadomo D, et al. Consistent and reproducible outcomes of blastocyst biopsy and aneuploidy screening across different biopsy practitioners: a multicentre study involving 2 586 embryo biopsies[J]. Hum Reprod, 2016, 31(1): 199-208.
[30]
Magli MC,Pomante A,Cafueri G, et al. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid?[J]. Fertil Steril, 2016, 105(3): 676-683.
[31]
Sullivan-Pyke C,Dokras A. Preimplantation genetic screening and preimplantation genetic diagnosis[J]. Obstet Gynecol Clin North Am, 2018, 45(1): 113-125.
[32]
Forman EJ,Upham KM,Cheng M, et al. Comprehensive chromosome screening alters traditional morphology-based embryo selection: a prospective study of 100 consecutive cycles of planned fresh euploid blastocyst transfer[J]. Fertil Steril, 2013, 100(3): 718-724.
[33]
Keltz MD,Vega M,Sirota I, et al. Preimplantation genetic screening (PGS) with comparative genomic hybridization (CGH) following day 3 single cell blastomere biopsy markedly improves IVF outcomes while lowering multiple pregnancies and miscarriages[J]. J Assist Reprod Genet, 2013, 30(10): 1333-1339.
[34]
Sermon K. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy[J]. Expert Rev Mol Diagn, 2017, 17(1): 71-82.
[35]
Griesinger G. Beware of the " implantation rate" ! Why the outcome parameter " implantation rate" should be abandoned from infertility research[J]. Hum Reprod, 2016, 31(2): 249-251.
[1] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[2] 娄丽丽, 刘瀚旻. 儿童哮喘易感基因及表观遗传学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 249-255.
[3] 魏权, 张燊, 陈慧佳, 邹姮, 胡丽娜. 女性生殖道微生物群与辅助生殖技术相关性研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 151-155.
[4] 张璐, 杨惠娟, 刘凯波. 2015—2021年北京市辅助生殖技术助孕活产及高龄孕母占比与不良妊娠结局变化趋势[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 46-53.
[5] 王璐, 王宇, 曾俊, 陈伟, 江华. 机器学习与多组学结合推动精准营养的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 540-544.
[6] 唐芹芳, 孙明忠, 傅庆萍, 肖丽华, 颜冬梅, 王颖, 季宏建. 糖尿病患者索氏梭菌感染致中毒性休克综合征一例[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 354-358.
[7] 刘铭, 闻赛, 李娜, 陈潇, 时玉雯, 王刚, 刘岚铮, 刘辉. 米氏克雷伯菌合并白色念珠菌感染致不明原因发热一例并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(01): 65-70.
[8] 张涵, 刘雅芳, 杨军英. 基于口-肠轴菌群变化的宏基因组学及其技术在口腔疾病研究中的意义[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 194-198.
[9] 陈雪梅, 丁声龙, 陈远洋, 周全红. 宏基因组学新一代测序技术诊断尿放线杆菌肺炎一例[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 765-767.
[10] 王湘, 陈良熠, 虞烽伟, 王正熙, 李秋彤, 李玉红. 骨形态发生蛋白在皮肤创面修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 101-107.
[11] 洪浩, 周苏雅, 陈月, 李明. 液相色谱质谱法对47例非透析慢性肾脏病患者色氨酸-犬尿氨酸通路的分析[J]. 中华肾病研究电子杂志, 2020, 09(06): 247-252.
[12] 丁潇楠, 韩秋霞, 张冬, 朱晗玉. 蛋白质组学及代谢组学在糖尿病肾病研究中的应用[J]. 中华肾病研究电子杂志, 2020, 09(05): 232-235.
[13] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[14] 杨翔, 邱海波. 宏基因组学二代测序技术在重症感染早期抗感染目标性治疗中的一些思考[J]. 中华重症医学电子杂志, 2022, 08(04): 289-290.
[15] 王宁, 吴慢莉, 杨东霞. 代谢组学生物标志物:子宫内膜异位症诊疗的新靶点[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1280-1283.
阅读次数
全文


摘要