切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2015, Vol. 11 ›› Issue (03) : 342 -346. doi: 10.3877/cma.j.issn.1673-5250.2015.03.012

所属专题: 文献

论著

支气管肺发育不良早产儿肝细胞生长因子、血管内皮生长因子水平变化及其相关性
高原1, 刘花兰2, 包云光1, 赵婵1, 余波3, 林振浪3,*,*()   
  1. 1. 321000 浙江省金华市中心医院儿科
    2. 325027 浙江省温州医科大学附属二院育英儿童医院新生儿科;315012 浙江省宁波妇女儿童医院儿科
    3. 325027 浙江省温州医科大学附属二院育英儿童医院新生儿科
  • 收稿日期:2014-12-15 修回日期:2015-04-28 出版日期:2015-06-01
  • 通信作者: 林振浪

Dynamic levels of hepatocyte growth factor and vascular endothelial growth factor in the development of bronchopulmonary dysplasia

Yuan Gao1, Hualan Liu2, Yunguang Bao1, Chan Zhao1, Bo Yu3, Zhenlang Lin3()   

  1. 1. Department of Pediatrics, Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
    2. 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Ningbo Women & Children's Hospital, Ningbo 315012, Zhejiang Province, China
    3. 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
  • Received:2014-12-15 Revised:2015-04-28 Published:2015-06-01
  • Corresponding author: Zhenlang Lin
  • About author:
    Corresponding author: Lin Zhenlang, Email:
引用本文:

高原, 刘花兰, 包云光, 赵婵, 余波, 林振浪. 支气管肺发育不良早产儿肝细胞生长因子、血管内皮生长因子水平变化及其相关性[J/OL]. 中华妇幼临床医学杂志(电子版), 2015, 11(03): 342-346.

Yuan Gao, Hualan Liu, Yunguang Bao, Chan Zhao, Bo Yu, Zhenlang Lin. Dynamic levels of hepatocyte growth factor and vascular endothelial growth factor in the development of bronchopulmonary dysplasia[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2015, 11(03): 342-346.

目的

探讨发生支气管肺发育不良(BPD)的早产儿支气管肺泡灌洗液(BALF)中肝细胞生长因子(HGF)和血管内皮生长因子(VEGF)表达水平变化及其相关性。

方法

选择2009年10月至2013年6月浙江省金华市中心医院(浙江大学金华医院)和温州医科大学附属二院育英儿童医院收治的生后24 h内行气管插管呼吸机辅助治疗的60例早产儿为研究对象。根据早产儿是否为BPD,将其分为BPD组(n=22)和非BPD组(n=38)。两组患儿的胎龄、出生体质量、性别构成比、生后5 min Apagar评分、肺表面活性物质(PS)应用次数等一般临床资料比较,差异无统计学意义(P>0.05)。两组患儿均于在气管插管拔除之前采集BALF,采集时间点分别在生后第1,3,7,14天。采用酶联免疫吸附测定(ELISA)法测定BALF上清液中HGF、VEGF及sIgA水平,并对两组进行对比分析。本研究遵循的程序符合金华市中心医院(浙江大学金华医院)和温州医科大学附属二院育英儿童医院人体试验委员会制定的伦理学标准,得到该委员会批准,征得受试对象监护人的知情同意,并与之签署临床研究知情同意书。

结果

①BPD组患儿接受呼吸机治疗时间明显较非BPD组长(Z=3.283,P=0.001)。②早产儿生后2周内不同时间点,BPD组患儿BALF中HGF及VEGF水平均低于非BPD组(P<0.05),且随着日龄的增加,BPD组的HGF水平逐渐下降,而VEGF水平逐渐升高。③出生后第3天HGF及VEGF水平与BPD转归呈负相关关系(OR=0.806,95%CI:0.764~0.851,P<0.01;OR=0.288,95%CI:0.189~0.439,P<0.01)。

结论

BPD早产儿BALF中HGF、VEGF水平明显低于非BPD早产儿。出生后第3天的HGF、VEGF低水平表达与BPD发生具有相关性。

Objective

To investigate the dynamic levels of hepatocyte growth factor (HGF), vascular endothelial growth factor(VEGF) in bronchopulmonary dysplasia (BPD), so that to reveal the relationship between two growth factors and BPD.

Methods

Sixty preterm newborns (<32 weeks' gestation) who visited the department of Pediatrics, Jinhua Central Hospital and The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University from October 2009 to June 2013 were included in this study. All of them were received mechanical ventilation within 24 h after birth. They were divided into BPD group (n=22) and BPD-free group (n=38) according to the diagnostic criteria of BPD. There were no significant differences between two groups in the aspects of gestational weeks, birth weight, constituent ratio of gender, 5 min Apgar scores and application numbers of pulmonary surfactant (PS), and so on (P>0.05). Bronchoalveolar lavage fluid(BALF) samples were collected from 60 ventilated preterm infants on 1st, 3rd, 7th, 14th day after birth. The levels of HGF, VEGF and secreted immunoglobulin (sIg) A were quantified by enzyme linked immunosorbent assay (ELISA), at the same time, clinical information were collected. The study protocol was approved by the Ethical Review Board of Investigation in Human Being of Jinhua Central Hospital and The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University. Informed consent was obtained from the parents of each participating child.

Results

①Ventilator therapy duration in BPD group was significantly longer than that in BPD-free group (Z=3.283, P=0.001). ②BPD group has lower levels of VEGF and HGF than those in BPD-free group at four different time-points (P<0.05), while the levels of VEGF became higher and higher, and the levels of HGF became lower and lower. The levels of HGF and VEGF on the 3rd day after birth showed negative connection with BPD(OR=0.806, 95%CI: 0.764~0.851, P<0.01; OR=0.288, 95%CI: 0.189~0.439, P<0.01).

Conclusions

Low levels of HGF and VEGF contribute to the development of BPD. The levels of VEGF and HGF on the 3rd day after birth are connected with the development of BPD.

表1 BPD组与非BPD组一般临床资料比较(±s)
Table 1 Comparison of clinical data between BPD group and BPD-free group (±s)
表2 BPD组与非BPD组BALF中HGF水平比较[pg/(mL·sIgA),±s]
Table 2 Comparison of HGF levels in BALF between BPD group and BPD-free group[pg/(mL·sIgA),±s]
表3 BPD组与非BPD组BALF中VEGF水平比较[pg/(mL·sIgA),±s]
Table 3 Comparison of VEGF levels in BALF between BPD group and BPD-free group[pg/(mL·sIgA),±s)]
表4 第1,3,7天HGF和VEGF水平与BPD的二元非条件多因素logistic回归分析
Table 4 Logistic regression between BPD and level of HGF and VEGF on the 1st, 3rd, 7st day
[1]
薛辛东,杨海萍. 早产儿支气管肺发育不良防治及管理的新认识[J/CD]. 中华妇幼临床医学杂志:电子版,2014,10(1): 5–8.
[2]
张山丹. 支气管肺发育不良神经系统预后的研究进展[J/CD]. 中华妇幼临床医学杂志:电子版,2012,8(3): 373–375.
[3]
Been JV,Debeer A,van Iwaarden JF,et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia[J]. Pediatr Res,2010,67(1):83–89.
[4]
Saito M,Ichiba H,Yokoi T,et al. Mitogenic activity of tracheal effluents from premature infants with chronic lung disease[J]. Pediatr Res,2004,55(6):960–965.
[5]
Monte LF,Silva Filho LV,Miyoshi MH,et al. Bronchopulmonary dysplasia[J]. J Pediatr,2005,81(2):99–110.
[6]
de Blic J,Midulla F,Barbato A,et al. Bronchoalveolar lavage in children. ERS Task Force on bronchoalveolar lavage in children[J]. Eur Respir J,2000,15(1):217–231.
[7]
Lassus P,Heikkilä P,Andersson LC,et al. Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants[J]. J Pediatr,2003,143(2):199–202.
[8]
Merritt TA,Deming DD,Boynton BR. The"new"bronchopulmonary dysplasia:challenges and commentary[J]. Semin Fetal Neonatal Med,2009,14(6):345–357.
[9]
Thébaud B,Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease[J]. Am J Respir Crit Care Med,2007,175(10):978–985.
[10]
Maniscalco WM,Bhandari V. Disruption of lung microvascular development,Abman SH,ed. Bronchopulmonary Dysplasia. 1st ed[M]. New York: Informa Healthcare,2010:146–166.
[11]
Kunig AM,Balasubramaniam V,Markham NE,et al. Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats[J]. Am J Physiol Lung Cell Mol Physiol,2005,289(4):529–535.
[12]
Bhatt AJ,Pryhuber GS,Huyck H,et al.Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, FIt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia[J]. Am J Respir crit care Med,2001,164(10pt 1):1971–1980.
[13]
Gomez GJ,Fernandez IB,Lopez SP,et al. Hepatocyte growth factor as an indicator of neonatal maturity[J]. J Pediatr Endocrinol Metab,2013,26(7-8):709–714.
[14]
Ohki Y,Mayuzumi H,Tokuyama K,et al. Hepatocyte growth factor treatment improves alveolarization in a newborn murine model of bronchopulmonary dysplasia[J]. Neonatology,2009,95(4):332–338.
[15]
Meller S,Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships[J]. Exp Lung Res, 2012,38(4):192–203.
[16]
Iosef C,Alastalo TP,Hou Y,et al. Inhibiting NF-kappaB in the developing lung disrupts angiogenesis and alveolarization[J]. Am J Physiol Lung Cell Mol Physiol,2012,302(10): 1023–1036.
[17]
Somaschini M,Castiglioni E,Presi S,et al. Genetic susceptibility to neonatal lung diseases[J]. Acta Biomed,2012,83(suppl 1N):10–14.
[18]
Mailaparambil B,Krueger M,Heizmann U,et al. Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia[J]. Dis Markers,2010,29(1):1–9.
[19]
Fujioka K,Shibata A,Yokota T,et al. Association of a vascular endothelial growth factor polymorphism with the development of bronchopulmonary dysplasia in Japanese premature newborns[J]. Sci Rep,2014,4:4459.
[20]
Padela S,Cabacungan J,Shek S,et al. Hepatocyte growth factor is required for alveologenesis in the neonatal rat[J]. Am J Respir Crit Care Med,2005,172(7):907–914.
[1] 邵小丽, 林燕, 张玲玲, 韩亚琴. 超声引导下子宫肌瘤注射聚桂醇硬化术联合术后米非司酮治疗临床疗效分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 353-360.
[2] 郭立珍, 范天群, 张欣凯, 蒋韵红, 金蓉, 刘冬云. 早产小于胎龄儿发生支气管肺发育不良的危险因素及预后分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 209-215.
[3] 陈佳俊, 徐慧姣, 蒋琴, 马俊梅, 侯昉, 徐冰, 刘文英. 外科治疗先天性膈肌发育异常疾病患儿的随访研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 1-8.
[4] 邓健, 王少华, 陈尊, 邹振庄. Keap1/Nrf2信号通路在脂多糖诱导宫内感染致新生鼠支气管肺发育不良的作用机制[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 665-674.
[5] 田权秀, 韩爱民, 徐艳. 动脉导管未闭与极低出生体重早产儿支气管肺发育不良的相关性分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 675-682.
[6] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[9] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[10] 暴静, 吴霞, 田雅萍, 尹钢. 维生素D3联合孟鲁司特钠治疗支气管哮喘对血清VEGF、TGF-β1及肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 63-67.
[11] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[12] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[13] 杨金涓, 夏建平. 糖尿病性黄斑水肿患者基线房水细胞因子水平评估血管内皮生长因子疗效的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 350-355.
[14] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[15] 宋建波, 韩俊伟, 周敏, 温红萍. 血管内皮生长因子受体酪氨酸激酶抑制剂致蛋白尿风险的荟萃分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1297-1303.
阅读次数
全文


摘要