切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (06) : 665 -674. doi: 10.3877/cma.j.issn.1673-5250.2023.06.007

论著

Keap1/Nrf2信号通路在脂多糖诱导宫内感染致新生鼠支气管肺发育不良的作用机制
邓健1, 王少华1,(), 陈尊1, 邹振庄1   
  1. 1. 广东省深圳市福田区妇幼保健院儿科,深圳 518045
  • 收稿日期:2023-02-14 修回日期:2023-08-01 出版日期:2023-12-01
  • 通信作者: 王少华

Mechanism of Keap1/Nrf2 pathway in role of intrauterine infection induced by lipopolysaccharide leading to bronchopulmonary dysplasia in neonatal rats

Jian Deng1, Shaohua Wang1,(), Zun Chen1, Zhenzhuang Zou1   

  1. 1. Department of Pediatrics, Futian District Maternal and Child Health Hospital, Shenzhen 518045, Guangdong Province, China
  • Received:2023-02-14 Revised:2023-08-01 Published:2023-12-01
  • Corresponding author: Shaohua Wang
  • Supported by:
    Natural Science Foundation of Shenzhen Science and Technology Innovation Commission(JCYJ20190813141207091, JCYJ20210324111806016, JCYJ20220530142015035)
引用本文:

邓健, 王少华, 陈尊, 邹振庄. Keap1/Nrf2信号通路在脂多糖诱导宫内感染致新生鼠支气管肺发育不良的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 665-674.

Jian Deng, Shaohua Wang, Zun Chen, Zhenzhuang Zou. Mechanism of Keap1/Nrf2 pathway in role of intrauterine infection induced by lipopolysaccharide leading to bronchopulmonary dysplasia in neonatal rats[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 665-674.

目的

探讨Kelch样环氧氯丙烷相关蛋白1 (Keap1)/核因子E2相关因子2 (Nrf2)信号通路,在脂多糖诱导宫内感染致新生鼠发生支气管肺发育不良(BPD)中的作用机制。

方法

选择12只无特定病原体(SPF)级6~8周龄Sprague Dawley(SD)雌性大鼠,以及建模成功2组孕鼠所产新生鼠为研究对象。将SD孕鼠采取数字表法随机分为BPD组(于孕龄为18 d时,腹腔注入脂多糖溶液构建BPD病理模型)和对照组(孕鼠腹腔注入等体积无菌生理盐水,构建空白对照模型),将其所产新生鼠采取随机数字表法,各选6只,分别纳入新生鼠BPD组与新生鼠对照组。①取2组新生鼠肺组织进行苏木精-伊红(HE)染色,采用HE染色观察其病理学变化;②采用生化检测氧化应激指标活性氧含量,相关抗氧化指标谷胱甘肽过氧化物酶(GSH-PX)及超氧化物歧化酶(SOD)活性;③采用酶联免疫吸附测定(ELISA)法检测炎症因子,如肿瘤坏死因子(TNF)-α,白细胞介素(IL)-1β、-6和转化生长因子(TGF)-β水平;④采用荧光定量聚合酶链式反应(qPCR)和Western blotting法检测Keap1/Nrf2信号通路Nrf2、血红素氧合酶1(HO-1)mRNA和蛋白表达水平。⑤采用SD大鼠Ⅱ型肺泡上皮细胞(ACEⅡ)进行细胞实验:将SD大鼠ACEⅡ按照处理方法不同分为6组,分别为ACEⅡ+空载组(Cell+NC组)、ACEⅡ+Nrf2干扰组(Cell+Si-Nrf2组)、脂多糖组(LPS组)、脂多糖+空载组(LPS+NC组)、脂多糖+Nrf2干扰组(LPS+Si-Nrf2组)及对ACEⅡ不做任何处理的对照组(control组),流式细胞术检测各组活性氧表达水平。本实验获得深圳市福田区妇幼保健院医学伦理委员会批准(批准日期:2022-05-16),实验过程对动物的处置符合动物伦理学要求。

结果

① HE染色结果显示,BPD组肺泡体积增大,肺泡间隔增厚,并存在部分炎症细胞浸润、出血现象。BPD组肺组织平均线性截距(MLI)和肺泡间隔厚度(AST)均较对照组增大、增多,2组比较,差异均有统计学意义(P<0.05)。②生化检测结果显示,BPD组的活性氧表达水平显著高于对照组,GSH-PX及SOD酶活性显著低于对照组,并且差异均有统计学意义(P<0.05)。③ELISA检测结果显示,BPD组TNF-α、IL-1β、IL-6、TGF-β水平显著高于对照组,差异均有统计学意义(P<0.05)。④qPCR及Western blotting检测结果显示,BPD组的HO-1 mRNA和蛋白表达水平均低于对照组,BPD组Nr2f2 mRNA相对表达水平低于对照组,并且差异具有统计学意义(P<0.05)。⑤流式细胞术检测各组细胞活性氧水平显示,LPS+Si-Nrf2组的活性氧水平显著高于LPS组、Control组,并且差异具有统计学意义(P<0.05)。

结论

LPS激活氧化因子及炎症因子诱导宫内感染致新生鼠肺氧化应激性损伤从而引起BPD,Nrf2通过调控抗氧化因子对大鼠ACEⅡ发挥保护作用。

Objective

To explore the mechanism of the Kelch like epichlorohydrin associated protein 1 (Keap1)/nuclear factor E2 associated factor 2 (Nrf2) signaling pathway in lipopolysaccharide induced intrauterine infection leading to bronchopulmonary dysplasia (BPD) in newborn mice.

Methods

Twelve Sprague-Dawley (SD) female rats of 6-8 weeks old with specific-pathogen-free (SPF) grade, and the newly born rats from successfully modeled pregnant rats were enrolled in this study. SD pregnant rats were randomly divided into BPD group (intraperitoneal injection of LPS solution on gestational day 18 to establish a BPD pathological model) and control group (intraperitoneal injection of equal volume of sterile normal saline to establish a blank control model) using the random number table method. The above 2 groups of pregnant rats will be randomly divided into a new born BPD group and a new born control group using the random number table method. Six newborns from each group will be selected and assigned to the corresponding group. Six newborn mice were randomly selected and included in BPD group and control group, respectively. The lung tissues of two groups of newborns were stained with hematoxylin-eosin (HE) and their pathological changes were observed. The levels of reactive oxygen species (ROS), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) activity, which are oxidative stress indicators, were detected. Enzyme-linked immunosorbent assay (ELISA) was used to measure inflammatory factors such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, -6, and transforming growth factor (TGF)-β levels. Fluorescence quantitative polymerase chain reaction (qPCR) was used to detect the relative expression levels of Nrf2 and heme oxygenase 1 (HO-1) mRNA in the Keap1/Nrf2 signaling pathway. Western blotting was used to measure the relative expression levels of Nrf2 and HO-1 protein in the Keap1/Nrf2 signaling pathway. An in vitro cell experiment was conducted using SD rats alveolar epithelial type Ⅱ cells (ACEⅡ). The ACEⅡ were divided into 6 groups according to different treatment methods, including ACEⅡ + empty vector group (Cell + NC group), ACEⅡ + Nrf2 interference group (Cell + Si-Nrf2 group), LPS group, LPS + empty vector group (LPS + NC group), LPS + Nrf2 interference group (LPS + Si-Nrf2 group), and control group without any treatment on ACEⅡ (Control group). Flow cytometry was used to detect the expression level of reactive oxygen species in each group. This experiment was approved by the Medical Ethics Committee of Shenzhen Futian District Maternal and Child Health Hospital, and the disposal of animals during the experiment meets the requirements of animal ethics.

Results

① The HE staining results showed that in BPD group of newborns, the alveolar volume increased, the alveolar septa thickened, and there were some inflammatory cell infiltration and bleeding phenomena. The mean linear intercept (MLI) and alveolar septal thickness (AST) of the lung tissue in BPD group increased compared to control group, and the difference was statistically significant (P<0.05). ② The biochemical test results showed that the expression level of reactive oxygen species in BPD group was significantly higher than that in control group, while the activities of GSH-PX and SOD enzymes were significantly lower than those of control group, and the differences were statistically significant (P<0.05). ③The ELISA detection results showed that the levels of TNF-α, IL-1β, IL-6, and TGF-β in BPD group of newborns were significantly higher than those in control group, and the differences were statistically significant (P<0.05). ④The qPCR detection results showed that the relative expression levels of Nrf2 and HO-1 mRNA in lung tissues of BPD group of newborns were lower than those in control group, and the difference were statistically significant (P<0.05). Further, Western blotting detection results showed that the relative expression level of HO-1 protein in lung tissue of BPD group of newborns was lower than that in control group, and the difference was statistically significant (P<0.05). ⑤The results of flow cytometry detection of reactive oxygen species in each group showed that the expression level of reactive oxygen species in the LPS+ Si-Nrf2 group was significantly higher than that in LPS group and control group, and the differences were statistically significant (P<0.05).

Conclusions

Lipopolysaccharide activates oxidative factors and inflammation factors, which induce intrauterine infection and cause oxidative stress-induced lung injury in newborns, leading to BPD. Nrf2 exerts protective effects on ACEⅡ in rats by regulating antioxidant factors.

表1 新生鼠肺组织RNA qPCR引物序列
图1 2组新生鼠肺组织HE染色结果(图1A:BPD组;图1B:对照组) 注:BPD组为腹腔注入脂多糖溶液构建BPD病理模型的孕鼠所产新生鼠。对照组为孕鼠腹腔注入等体积无菌生理盐水构建空白对照模型所产新生鼠。HE为苏木素-伊红,BPD为支气管肺发育不良
表2 2组新生鼠MLI和AST比较(μm, ±s)
表3 2组新生鼠活性氧含量、GSH-PX及SOD活性比较(±s)
表4 2组新生鼠肺组织炎症因子水平比较(±s)
表5 2组新生鼠肺组织Keap1/Nrf2信号通路Nrf2 mRNA和HO-1 mRNA相对表达水平比较(±s)
图2 2组新生鼠肺组织Keap1/Nrf2信号通路HO-1、Nrf2蛋白表达的Western blotting法检测条带图 注:BPD组为腹腔注入脂多糖溶液构建BPD病理模型的孕鼠所产新生鼠。对照组为孕鼠腹腔注入等体积无菌生理盐水构建空白对照模型所产新生鼠。HO-1为血红素氧合酶1,Nrf2为核因子E2相关因子2, BPD为支气管肺发育不良
表6 2组新生鼠肺组织Keap1/Nrf2信号通路HO-1和Nrf2蛋白相对表达水平比较(±s)
图3 流式细胞术检测6组ACEⅡ的活性氧水平比较(图3A:Cell+NC组;图3B:Cell+Si-Nrf2组;图3C: LPS组;图3D:LPS+NC组;图3E:LPS+Si-Nrf2组;图3F:Control组) 注:ACEⅡ为Ⅱ型肺泡上皮细胞
表7 6组ACEⅡ的活性氧水平比较(±s)
[1]
Davidson LM, Berkelhamer SK. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes [J]. J Clin Med, 2017, 6(1): 4. DOI: 10.3390/jcm6010004.
[2]
王思思,伍金林. 高氧诱导肺血管内皮细胞损伤与支气管肺发育不良的研究进展[J/OL]. 中华妇幼临床医学杂志(电子版)2021, 17(3): 368-372. DOI:10.3877/cma.j.issn.1673-5250.2021.03.020.
[3]
刘燕,赵铭,姜红,等. 极早产儿支气管肺发育不良影响因素的多中心临床研究 [J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(4): 419-426. DOI: 10.3877/cma.j.issn.1673-5250.2022.04.007.
[4]
Liu W, Su Y, Li S, et al. Weighted gene coexpression network reveals downregulation of genes in bronchopulmonary dysplasia [J]. Pediatr Pulmonol, 2021, 56(2): 392-399. DOI: 10.1002/ppul.25141.
[5]
杨锋,谢玲,林秋兰. 早产儿宫内感染性肺炎和支气管肺发育不良发生的高危因素[J/OL].中华实验和临床感染病杂志(电子版)2020, 14(4): 326-330. DOI:10.3877/cma.j.issn.1674-1358.2020.04.011.
[6]
Li J, Liu Y, Xue R, et al. Inflammation-related downregulation of zonula Occludens-1 in fetal membrane contributes to development of prelabor rupture of membranes[J].Placenta202099:173-179.DOI:10.1016/j.placenta.2020.07.029.
[7]
Endesfelder S, Strauβ E, Bendix I, et al. Prevention of oxygen-induced inflammatory lung injury by caffeine in neonatal rats [J]. Oxid Med Cell Longev, 2020, 2020: 3840124. DOI: 10.1155/2020/3840124.
[8]
Hu H, Dai S, Li J, et al. Glutamine improves heat stress-induced oxidative damage in the broiler thigh muscle by activating the nuclear factor erythroid 2–related 2/Kelch-like ECH-associated protein 1 signaling pathway - Science Direct [J]. Poultry Science, 2020, 99(3): 1454-1461. DOI: 10.1016/j.psj.2019.11.001.
[9]
高燕,任海锋,党治国. 宫内感染所致新生鼠肺损伤中MMP-9及MMP-11的表达分析[J].临床和实验医学杂志201918(16):1699-1702. DOI: 10.3969/j.issn.1671-4695.2019.16.006.
[10]
楚晓云,蔡成,张潇月,等. 高氧暴露对早产鼠肺组织HO-1和GCLC表达的影响[J].中国当代儿科杂志201921(6):594-600. DOI: 10.7499/j.issn.1008-8830.2019.06.018.
[11]
Cao L, Wang J, Tseu I, et al. Maternal exposure to endotoxin delays alveolarization during postnatal rat lung development [J]. Am J Physiol Lung Cell Mol Physiol, 2009, 296(5): L726-L737. DOI: 10.1152/ajplung.90405.2008.
[12]
Tao X, Fang Y, Huo C. Long non-coding RNA Rian protects against experimental bronchopulmonary dysplasia by sponging miR-421[J]. Exp Ther Med, 2021, 22(1): 781. DOI: 10.3892/etm.2021.10213.
[13]
徐凤丹,邓文龙,吴文燊,等. 乌司他丁对高氧诱导的新生小鼠肺损伤模型的疗效研究[J]. 发育医学电子杂志2021, 9(2): 94-102. DOI: 10.3969/j.issn.2095-5340.2021.02.003.
[14]
Lauer T, Behnke J, Oehmke F, et al. Bacterial colonization within the first six weeks of life and pulmonary outcome in preterm infants<1 000 g [J]. J Clin Med, 2020, 9(7): 2240. DOI: 10.3390/jcm9072240.
[15]
Nitkin CR, Bonfield TL. Balancing anti-inflammatory and anti-oxidant responses in murine bone marrow derived macrophages[J]. PLoS One, 2017, 12(9): e0184469. DOI: 10.1371/journal.pone.0184469.
[16]
熊曾,周霞,岳少杰.支气管肺发育不良的动物模型造模方法及其评价[J].中国当代儿科杂志201719(1):121-125.DOI:10.7499/j.issn.1008-8830.2017.01.020.
[17]
Chen D, Gao ZQ, Wang YY, et al. Sodium propionate enhances Nrf2-mediated protective defense against oxidative stress and inflammation in lipopolysaccharide-induced neonatal mice [J]. J Inflamm Res, 2021, 14: 803-816. DOI: 10.2147/JIR.S303105.
[18]
Ma D, Gao W, Liu J, et al. Mechanism of oxidative stress and Keap-1/Nrf2 signaling pathway in bronchopulmonary dysplasia[J]. Medicine (Baltimore), 2020, 99(26): e20433. DOI: 10.1097/MD.0000000000020433.
[19]
Lee H, Yeom M, Shin S, et al. Protective effects of aqueous extract of mentha suaveolens against oxidative stress-induced damages in human keratinocyte HaCaT cells [J]. Evid Based Complement Alternat Med, 2019, 2019: 5045491. DOI: 10.1155/2019/5045491.
[20]
Adach W, Żuchowski J, Moniuszko-Szajwaj B, et al. Comparative phytochemical, antioxidant, and hemostatic studies of extract and four fractions from paulownia clone in vitro 112 leaves in human plasma [J]. Molecules, 2020, 25(19): 4371. DOI: 10.3390/molecules25194371.
[21]
Qiu Z, He Y, Ming H, et al. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes [J]. J Diabetes Res, 2019, 2019: 8151836. DOI: 10.1155/2019/8151836.
[22]
Yu MH, Li X, Li Q, et al. SAA1 increases NOX4/ROS production to promote LPS-induced inflammation in vascular smooth muscle cells through activating p38MAPK/NF-κB pathway [J]. BMC Mol Cell Biol, 2019, 20(1): 15. DOI: 10.1186/s12860-019-0197-0.
[23]
Zhang Y, Li Q, Wei S, et al. ZNF143 suppresses cell apoptosis and promotes proliferation in gastric cancer via ROS/p53 axis [J]. Dis Markers, 2020, 2020: 5863178. DOI: 10.1155/2020/5863178
[24]
Fu H, Sun Y, Shao Y, et al. Interleukin 35 delays hindlimb ischemia-induced angiogenesis through regulating ROS-extracellular matrix but spares later regenerative angiogenesis [J]. Front Immunol, 2020, 11: 595813. DOI: 10.3389/fimmu.2020.595813.
[25]
Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway [J]. Mol Cell Biol, 2020, 40(13): e00099-20. DOI: 10.1128/MCB.00099-20.
[26]
Nukui A, Narimatsu T, Kambara T, et al. Clinically significant association of elevated expression of nuclear factor E2-related factor 2 expression with higher glucose uptake and progression of upper urinary tract cancer [J]. BMC Cancer, 2018, 18(1): 493. DOI: 10.1186/s12885-018-4427-1.
[27]
Ng AYH, Li Z, Jones MM, et al. Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species [J]. Elife, 2019, 8: e42951. DOI: 10.7554/eLife.42951.
[28]
Lee YG, Lee H, Jung JW, et al. Flavonoids from Chionanthus retusus (Oleaceae) flowers and their protective effects against glutamate-induced cell toxicity in HT22 cells [J]. Int J Mol Sci, 2019, 20(14): 3517. DOI: 10.3390/ijms20143517.
[29]
Wang R, Shen J, Yang R, et al. Association between heme oxygenase-1 gene promoter polymorphisms and cancer susceptibility: a Meta-analysis [J]. Biomed Rep, 2018, 8(3): 241-248. DOI: 10.3892/br.2018.1048.
[30]
Alam MB, Chowdhury NS, Sohrab MH, et al. Cerevisterol alleviates inflammation via suppression of MAPK/NF-κB/AP-1 and activation of the Nrf2/HO-1 signaling cascade. Biomolecules [J]. 2020, 10(2): 199. DOI: 10.3390/biom10020199.
[31]
Koirala D, Beranova-Giorgianni S, Giorgianni F. Early transcriptomic response to OxLDL in human retinal pigment epithelial cells [J]. Int J Mol Sci, 2020, 21(22): 8818. DOI: 10.3390/ijms21228818.
[32]
Jin S, Yang H, Jiao Y, et al. Dietary curcumin alleviated acute ileum damage of ducks (Anas platyrhynchos) induced by AFB1 through regulating Nrf2-ARE and NF-κB signaling pathways [J]. Foods, 2021, 10(6): 1370. DOI: 10.3390/foods10061370.
[33]
Zhang S, Jiang X, Wang Y, et al. Protective effect of an-gong-niu-huang wan pre-treatment against experimental cerebral ischemia injury via regulating GSK-3β/HO-1 pathway [J]. Front Pharmacol, 2021, 12: 640297. DOI: 10.3389/fphar.2021.640297.
[34]
Jia L, Hao H, Wang C, et al. Etomidate attenuates hyperoxia-induced acute lung injury in mice by modulating the Nrf2/HO-1 signaling pathway [J]. Exp Ther Med, 2021, 22(1): 785. DOI: 10.3892/etm.2021.10217.
[35]
Zhang Y, Ma Y, Zhao C, et al. Synergistic carcinogenesis of HPV18 and MNNG in Het-1A cells through p62-KEAP1-NRF2 and PI3K/AKT/mTOR pathway [J]. Oxid Med Cell Longev, 2020, 2020: 6352876. DOI: 10.1155/2020/6352876.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[3] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[4] 胡诤贇, 史建伟, 申建伟, 王冰, 蒋春苗, 刘冲. 基于机器学习鉴定早产儿支气管肺发育不良的关键基因[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 446-454.
[5] 杨萍, 许世敏, 李亮亮, 尹向云, 锡洪敏, 马丽丽, 李向红. 早产儿支气管肺发育不良合并代谢性骨病的影响因素[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 202-211.
[6] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[7] 魏强, 张明祥, 陈强谱, 孙宝房. 增味小承气汤对梗阻性黄疸大鼠胃肠道动力的影响[J]. 中华普通外科学文献(电子版), 2023, 17(04): 267-270.
[8] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[9] 王甜甜, 温媛, 李振, 叶美红, 郭影, 马双. 和厚朴酚调控Nrf2/ARE通路对胃癌细胞的顺铂化疗敏感性的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 202-209.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 张紫薇, 卢弘. 脂多糖受体复合体在急性前葡萄膜炎虹膜色素上皮细胞中作用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 167-171.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 李正达, 张艳兵, 刘茂霞, 李玉芳, 杨新静. 艾司洛尔对脓毒症肠损伤的保护作用及对自噬蛋白AMPK表达水平的影响[J]. 中华卫生应急电子杂志, 2023, 09(02): 90-95.
阅读次数
全文


摘要