[1] |
Hunter JM. Reversal of residual neuromuscular block: complications associated with perioperative management of muscle relaxation[J]. Br J Anaesth, 2017, 119(suppl_1): i53-i62. DOI: 10.1093/bja/aex318.
|
[2] |
Klucka J, Kosinova M, Krikava I, et al. Residual neuromuscular block in paediatric anaesthesia[J]. Br J Anaesth, 2019, 122(1): e1-e2. DOI: 10.1016/j.bja.2018.10.001.
|
[3] |
Matsui M, Konishi J, Suzuki T, et al. Reversibility of rocuronium-induced deep neuromuscular block with sugammadex in infants and children-a randomized study[J]. Biol Pharm Bull, 2019, 42(10): 1637-1640. DOI: 10.1248/bpb.b19-00044.
|
[4] |
Renew JR, Ratzlaff R, Hernandez-Torres V, et al. Neuromuscular blockade management in the critically ill patient[J]. J Intensive Care, 2020, 8:37. DOI: 10.1186/s40560-020-00455-2.
|
[5] |
Naguib M, Kopman AF, Lien CA, et al. A survey of current management of neuromuscular block in the United States and Europe[J]. Anesth Analg, 2010, 111(1): 110-119. DOI: 10.1213/ANE.0b013e3181c07428.
|
[6] |
Deng J, Balouch M, Albrink M, et al. Sugammadex reduces PACU recovery time after abdominal surgery compared with neostigmine[J]. South Med J, 2021, 114(10): 644-648. DOI: 10.14423/SMJ.0000000000001304.
|
[7] |
Gaver RS, Brenn BR, Gartley A, et al. Retrospective analysis of the safety and efficacy of sugammadex versus neostigmine for the reversal of neuromuscular blockade in children[J]. Anesth Analg, 2019, 129(4): 1124-1129. DOI: 10.1213/ANE.0000000000004207.
|
[8] |
|
[9] |
Baysal A, Sagiroglu G, Dogukan M, et al. Half-dose sugammadex after neostigmine versus neostigmine as a routine reversal agent: a pilot randomized trial[J]. J Perianesth Nurs, 2022, 37(3):326-332. DOI: 10.1016/j.jopan.2021.09.009.
|
[10] |
Veiga Ruiz G, García Cayuela J, Orozco Montes J, et al. Monitoring intraoperative neuromuscular blockade and blood pressure with one device (TOF-cuff): a comparative study with mechanomyography and invasive blood pressure[J]. Rev Esp Anestesiol Reanim, 2017, 64(10): 560-567. DOI: 10.1016/j.redar.2017.03.013.
|
[11] |
Luo J, Chen S, Min S, et al. Reevaluation and update on efficacy and safety of neostigmine for reversal of neuromuscular blockade[J]. Ther Clin Risk Manag, 2018, 14: 2397-2406. DOI: 10.2147/TCRM.S179420.
|
[12] |
Carron M, Zarantonello F, Tellaroli P, et al. Efficacy and safety of sugammadex compared to neostigmine for reversal of neuromuscular blockade: a Meta-analysis of randomized controlled trials[J]. J Clin Anesth, 2016, 35: 1-12. DOI: 10.1016/j.jclinane.2016.06.018.
|
[13] |
Chandrasekhar K, Togioka BM, Jeffers JL. Sugammadex[M]. Treasure Island (FL): StatPearls, 2021.
|
[14] |
Honing G, Martini CH, Bom A, et al. Safety of sugammadex for reversal of neuromuscular block[J]. Exp Opin Drug Saf, 2019, 18(10): 883-891. DOI: 10.1080/14740338.2019.1649393.
|
[15] |
Hristovska AM, Duch P, Allingstrup M, et al. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults[J]. Cochrane Database Syst Rev, 2017, 8: CD012763. DOI: 10.1002/14651858.CD012763.
|
[16] |
Miyazaki Y, Sunaga H, Kida K, et al. Incidence of anaphylaxis associated with sugammadex[J]. anesth Analg, 2018, 126(5): 1505-1508. DOI: 10.1213/ANE.0000000000002562.
|
[17] |
Tadokoro F, Morita K, Michihata N, et al. Association between sugammadex and anaphylaxis in pediatric patients: a nested case-control study using a national inpatient database[J]. Paediatr Anaesth, 2018, 28(7): 654-659. DOI: 10.1111/pan.13401.
|
[18] |
Herring WJ, Mukai Y, Wang A, et al. A randomized trial evaluating the safety profile of sugammadex in high surgical risk ASA physical class 3 or 4 participants[J]. BMC Anesthesiol, 2021, 21(1): 259. DOI: 10.1186/s12871-021-01477-5.
|
[19] |
Liu G, Wang R, Yan Y, et al. The efficacy and safety of sugammadex for reversing postoperative residual neuromuscular blockade in pediatric patients: a systematic review[J]. Sci Rep, 2017, 7(1): 5724. DOI: 10.1038/s41598-017-06159-2.
|
[20] |
Moon YJ, Kim SH, Kim JW, et al. Comparison of postoperative coagulation profiles and outcome for sugammadex versus pyridostigmine in 992 living donors after living-donor hepatectomy[J]. Medicine (Baltimore), 2018, 97(11): e0129. DOI: 10.1097/MD.0000000000010129.
|
[21] |
Rabi Andaloussi M. Post-thyroidectomy prothrombin time elevation and hematoma in a patient who received sugammadex[J]. Can J Anaesth, 2021, 68(8): 1294-1295. DOI: 10.1007/s12630-021-01986-4.
|
[22] |
Carron M, Zarantonello F, Lazzarotto N, et al. Role of sugammadex in accelerating postoperative discharge: a Meta-analysis[J]. J Clin Anesth, 2017, 39: 38-44. DOI: 10.1016/j.jclinane.2017.03.004.
|
[23] |
Tobias JD. Current evidence for the use of sugammadex in children[J]. Paediatr Anaesth, 2017, 27(2): 118-125. DOI: 10.1111/pan.13050.
|
[24] |
Voss T, Wang A, Deangelis M, et al. Sugammadex for reversal of neuromuscular blockade in pediatric patients: Results from a phase Ⅳ randomized study[J]. Paediatr Anaesth, 2022, 32(3): 436-445. DOI: 10.1111/pan.14370.
|
[25] |
Fierro C, Medoro A, Mignogna D, et al. Severe hypotension, bradycardia and asystole after sugammadex administration in an elderly patient[J]. Medicina (Kaunas), 2021, 57(1): 79. DOI: 10.3390/medicina57010079.
|
[26] |
Fuchs-buder T. Neostigmine: timing and dosing in 2016[J]. Anaesth Crit Care Pain Med, 2016, 35(4): 245-247. DOI: 10.1016/j.accpm.2016.06.004.
|
[27] |
Choi ES, Oh AY, Seo KS, et al. Optimum dose of neostigmine to reverse shallow neuromuscular blockade with rocuronium and cisatracurium[J]. Anaesthesia, 2016, 71(4): 443-449. DOI: 10.1111/anae.13398.
|
[28] |
Tajaate N, Schreiber JU, Fuchs-Buder T, et al. Neostigmine-based reversal of intermediate acting neuromuscular blocking agents to prevent postoperative residual paralysis: a systematic review[J]. Eur J Anaesthesiol, 2018, 35(3): 184-192. DOI: 10.1097/EJA.0000000000000741.
|
[29] |
Aytac I, Postaci A, Aytac B, et al. Survey of postoperative residual curarization, acute respiratory events and approach of anesthesiologists[J]. Braz J Anesthesiol, 2016, 66(1): 55-62. DOI: 10.1016/j.bjane.2012.06.011.
|
[30] |
Mamaril ME. Preoperative risk factors associated with pacu pediatric respiratory complications: an integrative review[J]. J Perianesth Nurs, 2020, 35(2): 125-134. DOI: 10.1016/j.jopan.2019.09.002.
|
[31] |
Pavoni V, Gianesello L, Martinelli C, et al. Recovery of laryngeal nerve function with sugammadex after rocuronium-induced profound neuromuscular block[J]. J Clin Anesth, 2016, 33: 14-19. DOI: 10.1016/j.jclinane.2016.01.015.
|
[32] |
Naguib M, Brull SJ, Kopman AF, et al. Consensus statement on perioperative use of neuromuscular monitoring[J]. Anesth Analg, 2018, 127(1): 71-80. DOI: 10.1213/ANE.0000000000002670.
|
[33] |
Naguib M, Brull SJ, Hunter JM, et al. Anesthesiologists′ overconfidence in their perceived knowledge of neuromuscular monitoring and its relevance to all aspects of medical practice: an international survey[J]. Anesth Analg, 2019, 128(6): 1118-1126. DOI: 10.1213/ANE.00000000003714.
|
[34] |
Soderstrom CM, Eskildsen KZ, Gatke MR, et al. Objective neuromuscular monitoring of neuromuscular blockade in Denmark: an online-based survey of current practice[J]. Acta Anaesthesiol Scand, 2017, 61(6): 619-626. DOI: 10.1111/aas.12907.
|
[35] |
Olesnicky BL, Lindberg A, Marroquin-Harris FB, et al. A survey of current management of neuromuscular block and reversal in Australia and New Zealand[J]. Anaesth Intensive Care, 2021, 49(4): 309-315. DOI: 10.1177/0310057X21995498.
|
[36] |
Batistaki C, Vagdatli K, Tsiotou A, et al. A multicenter survey on the use of neuromuscular blockade in Greece. Does the real-world clinical practice indicate the necessity of guidelines?[J]. J Anaesthesiol Clin Pharmacol, 2019, 35(2): 202-214. DOI: 10.4103/joacp.JOACP_195_18.
|
[37] |
Herring WJ, Woo T, Assaid CA, et al. Sugammadex efficacy for reversal of rocuronium- and vecuronium-induced neuromuscular blockade: a pooled analysis of 26 studies[J]. J Clin Anesth, 2017, 41: 84-91. DOI: 10.1016/j.jclinane.2017.06.006.
|
[38] |
Ledowski T, O′dea B, Meyerkort L, et al. Postoperative residual neuromuscular paralysis at an Australian tertiary children′s hospital[J]. Anesthesiol Res Pract, 2015, 2015: 410248. DOI: 10.1155/2015/410248.
|
[39] |
Murphy GS, Brull SJ. Quantitative neuromuscular monitoring and postoperative outcomes: a narrative review[J]. Anesthesiology, 2022, 136(2): 345-361. DOI: 10.1097/ALN.0000000000004044.
|
[40] |
Cappellini I, Picciafuochi F, Ostento D, et al. Recovery of muscle function after deep neuromuscular block by means of diaphragm ultrasonography and adductor of pollicis acceleromyography with comparison of neostigmine vs. sugammadex as reversal drugs: study protocol for a randomized controlled trial[J]. Trials, 2018, 19(1): 135. DOI: 10.1186/s13063-018-2525-7.
|
[41] |
Fukuhara S, Kawashima T, Oka H. Indices reflecting muscle contraction performance during exercise based on a combined electromyography and mechanomyography approach[J]. Sci Rep, 2021, 11(1): 21208. DOI: 10.1038/s41598-021-00671-2.
|
[42] |
Iwasaki H, Yamamoto M, Sato H, et al. A comparison between the adductor pollicis muscle using tof-watch sx and the abductor digiti minimi muscle using tetragraph in rocuronium-induced neuromuscular block: a prospective observational study[J]. Anesth Analg, 2022. DOI: 10.1213/ANE.0000000000005897.
|
[43] |
Takagi S, Suzuki T, Nakatsuka H, et al. Comparison of a new EMG module, AF-201P, with acceleromyography using the post-tetanic counts during rocuronium-induced deep neuromuscular block: a prospective, multicenter study[J]. J Clin Monit Comput, 2021. DOI: 10.1007/s10877-021-00768-z.
|
[44] |
Colegrave N, Billard V, Motamed C, et al. Comparison of the TOF-scan acceleromyograph to TOF-watch SX: influence of calibration[J]. Anaesth Crit Care Pain Med, 2016, 35(3): 223-227. DOI: 10.1016/j.accpm.2016.01.003.
|
[45] |
|
[46] |
Martinez AP, Moser TP, Saran N, et al. Phonomyography as a non-invasive continuous monitoring technique for muscle ischemia in an experimental model of acute compartment syndrome[J]. Injury, 2017, 48(11): 2411-2416. DOI: 10.1016/j.injury.2017.08.051.
|