Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2022, Vol. 18 ›› Issue (02): 132 -138. doi: 10.3877/cma.j.issn.1673-5250.2022.02.002

Forum

Current research status on chromosomal mosaicism and uniparental disomy

Wanting Cui, Yanyan Zhao()   

  1. Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
  • Received:2021-10-30 Revised:2022-02-09 Published:2022-04-01
  • Corresponding author: Yanyan Zhao
  • Supported by:
    National Key Research and Development Program of " 13th Five-Year Plan"(2016YFC1000700, 2016YFC1000702)

Chromosomal mosaicism (CM) and uniparental disomy (UPD) arise from the chromosome mis-segregation in cell division of embryogenesis. Recent researches demonstrated the relationships between CM and mitosis errors of embryonic cell. By assisted reproductive technology and single cell next-generation sequencing technology (NGST), researchers found that the early embryo development accompanied with dynamic processes of chromosome segregation errors and self-correction, the result of which determined the chromosome constitutions of embryo. The abnormal cell lines with chromosome disorders could distribute in different tissues and organs with variable types and proportions, which could lead to a large variation in clinical symptoms and phenotypes of CM. UPD might result from the rescue of meiosis or mitosis errors. It was wide known that the UPD disorders related to imprinted genes, and the pathogenicities of UPD in other chromosomes without imprinted genes still need to be explored. The detection rate of these two chromosome abnormalities has been improved with the development of NGST, however, due to insufficient support of deficient research evidences, it is difficult to evaluate the pathogenicities of these two chromosome abnormalities and predict the risk of fetal involvement confidently in the genetic counseling. Thus, in order to provide references for clinical research of these two chromosome aberrations, we will demonstrate the latest research progresses of mechanism, pathogenicity, prenatal diagnosis and genetic counseling of these two chromosome abnormalities in this review.

[1]
Eggermann T, Soellner L, Buiting K, et al. Mosaicism and uniparental disomy in prenatal diagnosis[J]. Trends Mol Med, 201521(2): 77-87. DOI:10.1016/j.molmed.2014.11.010.
[2]
Taylor TH, Gitlin SA, Patrick JL, et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans[J]. Hum Reprod Update, 2014, 20(4): 571-581. DOI: 10.1093/humupd/dmu016.
[3]
Conlin LK, Thiel BD, Bonnemann CG, et al. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis[J]. Hum Mol Genet, 201019(7): 1263-1275.DOI:10.1093/hmg/ddq003.
[4]
Robinson WP. Mechanisms leading to uniparental disomy and their clinical consequences[J]. Bioessays, 2000, 22(5): 452-459.
[5]
Butler MG. Imprinting disorders in humans: a review[J]. Curr Opin Pediatr, 2020, 32(6): 719-729. DOI: 10.1097/MOP.0000000000000965.
[6]
Chantot-Bastaraud S, Stratmann S, Brioude F, et al. Formation of upd(7)mat by trisomic rescue: SNP array typing provides new insights in chromosomal nondisjunction[J]. Mol Cytogenet, 2017, 10: 28. DOI: 10.1186/s13039-017-0329-1.
[7]
Popovic M, Dhaenens L, Boel A, et al. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma[J]. Hum Reprod Update, 2020, 26(3): 313-334. DOI: 10.1093/humupd/dmz050.
[8]
Niida Y, Ozaki M, Shimizu M, et al. Classification of uniparental isodisomy patterns that cause autosomal recessive disorders: proposed mechanisms of different proportions and parental origin in each pattern[J]. Cytogenet Genome Res, 2018, 154(3): 137-146. DOI: 10.1159/000488572.
[9]
Lalou I, Gkrozou F, Meridis E, et al. Molecular investigation of uniparental disomy (UPD) in spontaneous abortions[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 236: 116-120. DOI: 10.1016/j.ejogrb.2019.03.004.
[10]
Spinner NB, Conlin LK. Mosaicism and clinical genetics[J]. Am J Med Genet C Semin Med Genet, 2014, 166C(4): 397-405. DOI: 10.1002/ajmg.c.31421.
[11]
Schroeder C, Ekici AB, Moog U, et al. Genome-wide UPD screening in patients with intellectual disability[J]. Eur J Hum Genet, 2014, 22(10): 1233-1235. DOI: 10.1038/ejhg.2014.63.
[12]
Del Gaudio D, Shinawi M, Astbury C, et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2020, 22(7): 1133-1141. DOI: 10.1038/s41436-020-0782-9.
[13]
Liu Y, Guo L, Chen H, et al. Discrepancy of QF-PCR, CMA and karyotyping on a de novo case of mosaic isodicentric Y chromosomes[J]. Mol Cytogenet, 2019, 12: 1. DOI: 10.1186/s13039-018-0413-1.
[14]
Vázquez-Diez C, FitzHarris G. Causes and consequences of chromosome segregation error in preimplantation embryos[J]. Reproduction, 2018, 155(1): R63-R76. DOI:10.1530/REP-17-05692018.
[15]
Macaulay IC, Haerty W, Kumar P, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes[J]. Nat Methods, 2015, 12(6): 519-522. DOI:10.1038/nmeth.3370.
[16]
Griffiths JA, Scialdone A, Marioni JC. Mosaic autosomal aneuploidies are detectable from single-cell RNAseq data[J]. BMC Genomics, 2017, 18(1): 904. DOI:10.1186/s12864-017-4253-x.
[17]
Starostik MR, Sosina OA, McCoy RC. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism[J]. Genome Res, 2020, 30(6): 814-825. DOI: 10.1101/gr.262774.120.
[18]
Li X, Hao Y, Elshewy N, et al. The mechanisms and clinical application of mosaicism in preimplantation embryos[J]. J Assist Reprod Genet, 2020, 37(3): 497-508. DOI: 10.1007/s10815-019-01656-x.
[19]
Santos MA, Teklenburg G, Macklon NS, et al. The fate of the mosaic embryo: chromosomal constitution and development of day 4, 5 and 8 human embryos[J]. Hum Reprod, 2010, 25(8): 1916-1926. DOI: 10.1093/humrep/deq139.
[20]
Mantikou E, Wong KM, Repping S, et al. Molecular origin of mitotic aneuploidies in preimplantation embryos[J]. Biochim Biophys Acta, 2012, 1822(12): 1921-1930. DOI: 10.1016/j.bbadis.2012.06.013.
[21]
Singla S, Iwamoto-Stohl LK, Zhu M, et al. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism[J]. Nat Commun, 2020, 11(1): 2958. DOI: 10.1038/s41467-020-16796-3.
[22]
Orvieto R, Shimon C, Rienstein S, et al. Do human embryos have the ability of self-correction[J]. Reprod Biol Endocrinol, 2020, 18(1): 98. DOI: 10.1186/s12958-020-00650-8.
[23]
Daughtry BL, Rosenkrantz JL, Lazar NH, et al. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion[J]. Genome Res, 2019, 29(3): 367-382. DOI: 10.1101/gr.239830.118.
[24]
Haouzi D, Boumela I, Chebli K, et al. Global, survival, and apoptotic transcriptome during mouse and human early embryonic development[J]. Biomed Res Int, 2018, 2018: 5895628. DOI: 10.1155/2018/5895628.
[25]
Chavez SL, Loewke KE, Han J, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage[J]. Nat Commun, 2012, 3: 1251. DOI: 10.1038/ncomms2249.
[26]
Kort DH, Chia G, Treff NR, et al. Human embryos commonly form abnormal nuclei during development: a mechanism of DNA damage, embryonic aneuploidy, and developmental arrest[J]. Hum Reprod, 2016, 31(2): 312-323. DOI: 10.1093/humrep/dev281.
[27]
McCoy RC. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm[J]. Trends Genet, 2017, 33(7): 448-463. DOI: 10.1016/j.tig.2017.04.001.
[28]
Webster A, Schuh M. Mechanisms of aneuploidy in human eggs[J]. Trends Cell Biol, 2017, 27(1): 55-68. DOI: 10.1016/j.tcb.2016.09.002.
[29]
Benn P. Uniparental disomy: origin, frequency, and clinical significance[J]. Prenat Diagn, 202141(5):564-572. DOI: 10.1002/pd.5837.
[30]
Ma J, Cram DS, Zhang J, et al. Birth of a child with trisomy 9 mosaicism syndrome associated with paternal isodisomy 9: case of a positive noninvasive prenatal test result unconfirmed by invasive prenatal diagnosis[J]. Mol Cytogenet, 2015, 8: 44. DOI: 10.1186/s13039-015-0145-4.
[31]
Liehr T, Ewers E, Hamid AB, et al. Small supernumerary marker chromosomes and uniparental disomy have a story to tell[J]. J Histochem Cytochem, 2011, 59(9): 842-848. DOI:10.1369/0022155411412780.
[32]
Wolstenholme J. Confined placental mosaicism for trisomies 2,3, 7, 8, 9, 16, and 22: their incidence, likely origins, and mechanisms for cell lineage compartmentalization[J]. Prenat Diagn, 199616(6):511-524. DOI:10.1002/(SICI)1097-0223(199606)16:6<511::AID-PD904>3.0.CO;2-8.
[33]
Del Gobbo GF, Konwar C, Robinson WP. The significance of the placental genome and methylome in fetal and maternal health[J]. Hum Genet, 2020, 139(9): 1183-1196. DOI: 10.1007/s00439-019-02058-w.
[34]
Cui W, Liu X, Zhang Y, et al. Evaluation of non-invasive prenatal testing to detect chromosomal aberrations in a Chinese cohort[J]. J Cell Mol Med, 2019, 23(11): 7873-7878. DOI:10.1111/jcmm.14614.
[35]
Hayata K, Hiramatsu Y, Masuyama H, et al. Discrepancy between non-invasive prenatal genetic testing (NIPT) and amniotic chromosomal test due to placental mosaicism: a case report and literature review[J]. Acta Med Okayama, 2017, 71(2): 181-185. DOI: 10.18926/AMO/54988.
[36]
Hook EB, Warburton D. Turner syndrome revisited: review of new data supports the hypothesis that all viable 45,X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss[J]. Hum Genet, 2014, 133(4): 417-424. DOI:10.1007/s00439-014-1420-x.
[37]
Karaman B, Kayserili H, Ghanbari A, et al. Pallister-Killian syndrome: clinical, cytogenetic and molecular findings in15 cases[J]. Mol Cytogenet, 2018, 11: 45. DOI: 10.1186/s13039-018-0395-z.
[38]
Yamazawa K, Ogata T, Ferguson-Smith AC. Uniparental disomy and human disease: an overview[J]. Am J Med Genet C Semin Med Genet, 2010, 154C(3): 329-334. DOI: 10.1002/ajmg.c.30270.
[39]
Liehr T. Cytogenetic contribution to uniparental disomy (UPD)[J]. Mol Cytogenet, 2010, 3: 8. DOI: 10.1186/1755-8166-3-8.
[40]
Nakka P, Pattillo Smith S, O′Donnell-Luria AH, et al. Characterization of prevalence and health consequences of uniparental disomy in four million individuals from the general population[J].Am J Hum Genet, 2019, 105(5): 921-932. DOI: 10.1016/j.ajhg.2019.09.016.
[41]
Vásquez Sotomayor F, Abarca-Barriga HH. Homozygous deletion of the CFTR gene caused by interstitial maternal isodisomy in a peruvian child with cystic fibrosis[J]. J Pediatr Genet, 2019, 8(3): 147-152. DOI: 10.1055/s-0039-1678682.
[42]
Quan F, Janas J, Toth-Fejel S, et al. Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy[J].Am J Hum Genet, 1997, 60(1): 160-165.
[43]
Grati FR, Grimi B, Frascoli G, et al. Confirmation of mosaicism and uniparental disomy in amniocytes, after detection of mosaic chromosome abnormalities in chorionic villi[J]. Eur J Hum Genet, 2006, 14(3): 282-288. DOI: 10.1038/sj.ejhg.5201564.
[44]
Grati FR. Chromosomal mosaicism in human feto-placental development: implications for prenatal diagnosis[J]. J Clin Med, 2014, 3(3): 809-837. DOI: 10.3390/jcm3030809.
[45]
Ballif BC, Rorem EA, Sundin K, et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens[J]. Am J Med Genet A, 2006, 140(24): 2757-2767. DOI: 10.1002/ajmg.a.31539.
[46]
Liang D, Peng Y, Lyu W, et al. Copy number variation sequencing for comprehensive diagnosis of chromosome disease syndromes[J]. J Mol Diagn, 2014, 16(5): 519-526. DOI: 10.1016/j.jmoldx.2014.05.002.
[47]
Robinson WP, McFadden DE, Barrett IJ, et al. Origin of amnion and implications for evaluation of the fetal genotype in cases of mosaicism[J]. Prenat Diagn, 2002, 22(12): 1076-1085. DOI: 10.1002/pd.483.
[48]
Hsu LY, Benn PA. Revised guidelines for the diagnosis of mosaicism in amniocytes[J]. Prenat Diagn, 1999, 19(11): 1081-1082.
[49]
Nadesapillai S, van der Velden J, Smeets D, et al. Why are some patients with 45,X Turner syndrome fertile? A young girl with classical 45,X Turner syndrome and a cryptic mosaicism in the ovary[J]. Fertil Steril, 2021, 115(5):1280-1287. DOI: 10.1016/j.fertnstert.2020.11.006.
[50]
Chen CP, Peng CR, Chern SR, et al. Interphase fluorescence in situ hybridization characterization of mosaicism using uncultured amniocytes and cultured stimulated cord blood lymphocytes in prenatally detected Pallister-Killian syndrome[J]. Taiwan J Obstet Gynecol, 2014, 53(4): 566-571. DOI: 10.1016/j.tjog.2014.09.004.
[51]
Zhang Y, Zhong M, Zheng D. Chromosomal mosaicism detected by karyotyping and chromosomal microarray analysis in prenatal diagnosis[J]. J Cell Mol Med, 2021, 25(1): 358-366. DOI: 10.1111/jcmm.16080.
[52]
Silva M, de Leeuw N, Mann K, et al. European guidelines for constitutional cytogenomic analysis[J]. Eur J Hum Genet, 2019, 27(1): 1-16. DOI: 10.1038/s41431-018-0244-x.
[53]
Schroeder C, Sturm M, Dufke A, et al. UPD tool: a tool for detection of iso- and heterodisomy in parent-child trios using SNP microarrays[J]. Bioinformatics, 2013, 29(12): 1562-1564. DOI: 10.1093/bioinformatics/btt174.
[54]
Moradkhani K, Cuisset L, Boisseau P, et al. Risk estimation of uniparental disomy of chromosome 14 or 15 in a fetus with a parent carrying a non-homologous Robertsonian translocation. Should we still perform prenatal diagnosis?[J]. Prenat Diagn, 2019, 39(11): 986-992. DOI: 10.1002/pd.5518.
[55]
Van Opstal D, Diderich KEM, Joosten M, et al. Unexpected finding of uniparental disomy mosaicism in term placentas: is it a common feature in trisomic placentas?[J]. Prenat Diagn, 2018, 38(12): 911-919. DOI: 10.1002/pd.5354.
[1] Shuang Liu, Hongmei Dong, Xiaohang Zhang, Qian Ran, Suzhen Ran. Ultrasound diagnosis of fetal single umbilical artery at 11~13+6 weeks of pregnancy and its correlation with chromosome abnormality[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(09): 908-914.
[2] Tingting Man, Xiaoyan Hao, Xiaowei Liu, Hairui Sun, Yihua He. Common intracardiac malformations and genetic abnormalities in tetralogy of Fallot[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(08): 779-784.
[3] Zhaomin Zeng, Haiyan Yu. Clinical cognition of superfemale syndrome[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(02): 145-150.
[4] Yuxiang Bian, Lichun Wang, Rong Cai. Predictive value of detection of fetal ultrasound soft indexes in fetal chromosomal abnormalities[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(01): 85-92.
[5] Hexuan Zhang, Yonggang Song, Xue Yang. Results of non-invasive prenatal testing to pregnant women: a large sample analysis[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 685-691.
[6] Jun Wang, Zhenqiang Zhang, Xiyi Wang, Xingqing Gou, Yuping He. Analysis of influencing factors on results of embryo preimplantation genetic testing for chromosome structural rearrangement in chromosomal reciprocal translocation carriers[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 652-659.
[7] Lin You, Zhenwei Cai, Jing Qiao. Clinical research progress on Turner syndrome[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 634-639.
[8] Jingjing Chen, Fang Qian. Polymorphism of methylenetetrahydrofolate reductase gene and chromosomal abnormalities among childbearing age women of different nationalities in Xinjiang Uygur Autonomous Region[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 599-605.
[9] Lei Liu, Yingsi Li, Hang Zhou, Ken Cheng, Ying Huo, Tingying Lei. Clinical analysis of fetal prognosis of single umbilical artery with other congenital structural malformations[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(04): 427-432.
[10] Jianlong Zhuang, Wanyu Fu, Wenli Chen, Yuying Jiang, Shuhong Zeng, Yuanbai Wang, Xiaoxia Wu. Rare chromosome 13q22.1-13q31.3 deletion sydrome: a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(03): 337-342.
[11] Jiangmei He, Hongmei Liu, Meiling Zheng, Zhili Zhang. Clinical value of non-invasive prenatal testing for screening of fetal chromosome copy number variation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(03): 300-306.
[12] Liangyu Xie, He Wang, Xiaowen Zhao, Xun Zhang, Xuemei Zhang, Hongqian Liu, Qian Zhu, Jing Wang, Ting Hu, Zhu Zhang, Yi Lai, Li Qin, Shanling Liu. Fetal karyotype of amniotic fluid cells and interventional prenatal diagnosis indications of pregnant women in the second trimester with high risk of fetal chromosome abnormality: a large sample study[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(01): 73-79.
[13] Limin Yao, Jinman Zhang, Shu Zhu, Dongmei Li, Rui Yu, Lihua Lu, Qingfen Zhao, Yunchuan Ding. Analysis on results of ultrasonographic and chromosome karyotype of fetuses with 18-trisomy syndrome during the second trimester pregnancy[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(05): 590-597.
[14] Jiayi Li, Meili Zhang, Yue Huang. Amplification of chromosome 1q impairs neural differentiation ability of human embryonic stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(03): 129-137.
[15] Zhongyu Chen, Shui Jing. Value of high-throughput sequencing technology in observation of chromosomal abnormalities in the villus samples of women with missed abortion and risk factors for missed abortion[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(12): 1003-1008.
Viewed
Full text


Abstract