[1] |
|
[2] |
|
[3] |
Cousins FL, O DF, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis[J]. Best Pract Res Clin Obstet Gynaecol, 2018, 20: 27-38. DOI: 10.1016/j.bpobgyn.2018.01.011.
|
[4] |
Xu S, Chan RWS, Ng EHY, et al. Spatial and temporal characterization of endometrial mesenchymal stem-like cells activity during the menstrual cycle[J]. Exp Cell Res, 2017, 350(1): 184-189. DOI: 10.1016/j.yexcr.2016.11.020.
|
[5] |
Barragan F, Irwin JC, Balayan S, et al. Human endometrial fibroblasts derived from mesenchymal progenitors inherit progesterone resistance and acquire an inflammatory phenotype in the endometrial niche in endometriosis[J]. Biol Reprod, 2016, 94(5): 118. DOI: 10.1095/biolreprod.115.136010.
|
[6] |
Baranov VS, Ivaschenko TE, Yarmolinskaya MI. Comparative systems genetics view of endometriosis and uterine leiomyoma: two sides of the same coin?[J].Syst Biol Reprod Med, 2016, 62(2): 93-105.DOI: 10.3109/19396368.2015.1123325.
|
[7] |
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology[J]. Hum Reprod Update, 2020, 26(3): 423-449.DOI: 10.1093/humupd/dmz047.
|
[8] |
Bulun SE, Yilmaz BD, Sison C, et al. Endometriosis[J]. Endocr Rev, 2019, 40(4): 1048-1079.DOI: 10.1210/er.2018-00242.
|
[9] |
Wang LX, Zhao J, Li Y, et al. Genome-wide analysis of DNA methylation in endometriosis using illumina human methylation 450 K bead chips[J]. Mol Reprod Dev, 2019, 86(5): 491-501. DOI: 10.1002/mrd.23127.
|
[10] |
Tampaki EC, Tampakis A, Kontzoglou K, et al. Commentary: somatic stem cells and their dysfunction in endometriosis[J]. Front Surg, 2017, 4: 37.DOI: 10.3389/fsurg.2017.00037.
|
[11] |
Macer ML, Taylor HS. Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility[J]. Obstet Gynecol Clin North Am, 2012, 39(4): 535-549. DOI: 10.1016/j.ogc.2012.10.002.
|
[12] |
Li F, Alderman MH, Tal A, et al. Hematogenous dissemination of mesenchymal stem cells from endometriosis[J]. Stem Cells, 2018, 36(6): 881-890. DOI: 10.1002/stem.2804.
|
[13] |
Koninckx PR, Ussia A, Adamyan L, et al. Pathogenesis of endometriosis: the genetic/epigenetic theory[J]. Fertil Steril, 2019, 111(2): 327-340. DOI: 10.1016/j.fertnstert.2018.10.013.
|
[14] |
O DF, Roskams T, Van den Eynde K, et al. The presence of endometrial cells in peritoneal fluid of women with and without endometriosis[J]. Reprod Sci, 2017, 24(2): 242-251. DOI: 10.1177/1933719116653677.
|
[15] |
Chen P, Mamillapalli R, Habata S, et al. Endometriosis cell proliferation induced by bone marrow mesenchymal stem cells[J]. Reprod Sci, 2021, 28(2): 426-434. DOI: 10.1007/s43032-020-00294-4.
|
[16] |
Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis[J]. Stem Cells, 2007, 25(8): 2082-2086. DOI: 10.1634/stemcells.2006-0828.
|
[17] |
|
[18] |
Moridid I, Mamillapalli R, Cosar E, et al. Bone marrow stem cell chemotactic activity is induced by elevated CXCL12 in endometriosis[J]. Roprod Sci, 2016, 24(4):526-533.DOI: 10.1177/1933719116672587.
|
[19] |
AlAshqar A, Reschke L, Kirschen GW, et al. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies[J]. Biol Reprod, 2021: ioab054.DOI: 10.1093/biolre/ioab054.
|
[21] |
Ahn SH, Khalaj K, Young SL, et al. Immune-inflammation gene signatures in endometriosis patients[J].Fertil Steril, 2016, 106(6): 1420-1431.e7. DOI: 10.1016/j.fertnstert.2016.07.005.
|
[22] |
Chen Y, Wang K, Xu Y, et al. Alteration of myeloid-derived suppressor cells, chronic inflammatory cytokines, and exosomal miRNA contribute to the peritoneal immune disorder of patients with endometriosis[J].Reprod Sci, 2019, 26(8): 1130-1138. DOI: 10.1177/1933719118808923.
|
[23] |
Aksak T, Gümürdülü D, Cetin MT, et al. Expression of monocyte chemotactic protein 2 and tumor necrosis factor alpha in human normal endometrium and endometriotic tissues[J].J Gynecol Obstet Hum Reprod, 2021, 50(5): 101971. DOI: 10.1016/j.jogoh.2020.101971.
|
[24] |
Guo SW, Du YB, Liu X. Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis[J]. Hum Reprod, 2016, 31(7): 1462-1474. DOI: 10.1093/humrep/dew057.
|
[25] |
Yu JJ, Sun HT, Zhang ZF, et al. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis[J]. Reproduction, 2016, 152(2): 151-160. DOI: 10.1530/REP-16-0089.
|
[26] |
Yang HL, Zhou WJ, Chang KK, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-beta[J]. Reproduction, 2017, 154(6): 815-825. DOI: 10.1530/REP-17-0342.
|
[27] |
|
[28] |
Shan J, Ni Z, Cheng W, et al. Gut microbiota imbalance and its correlations with hormone and inflammatory factors in patients with stage 3/4 endometriosis[J]. Arch Gynecol Obstet, 2021. DOI: 10.1007/s00404-021-06057-z..
|
[29] |
Hou XX, Wang XQ, Zhou WJ, et al. Regulatory T cells induce polarization of pro-repair macrophages by secreting sFGL2 into the endometriotic milieu[J]. Commun Biol, 2021, 4(1): 499. DOI: 10.1038/s42003-021-02018-z.
|